goblin/elf/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
//! The generic ELF module, which gives access to ELF constants and other helper functions, which are independent of ELF bithood. Also defines an `Elf` struct which implements a unified parser that returns a wrapped `Elf64` or `Elf32` binary.
//!
//! To access the exact 32-bit or 64-bit versions, use [goblin::elf32::Header](header/header32/struct.Header.html)/[goblin::elf64::Header](header/header64/struct.Header.html), etc., for the various 32/64-bit structs.
//!
//! # Example
//!
//! ```rust
//! use std::fs::File;
//!
//! pub fn read (bytes: &[u8]) {
//! match goblin::elf::Elf::parse(&bytes) {
//! Ok(binary) => {
//! let entry = binary.entry;
//! for ph in binary.program_headers {
//! if ph.p_type == goblin::elf::program_header::PT_LOAD {
//! // TODO: you should validate p_filesz before allocating.
//! let mut _buf = vec![0u8; ph.p_filesz as usize];
//! // read responsibly
//! }
//! }
//! },
//! Err(_) => ()
//! }
//! }
//! ```
//!
//! This will properly access the underlying 32-bit or 64-bit binary automatically. Note that since
//! 32-bit binaries typically have shorter 32-bit values in some cases (specifically for addresses and pointer
//! values), these values are upcasted to u64/i64s when appropriate.
//!
//! See [goblin::elf::Elf](struct.Elf.html) for more information.
//!
//! You are still free to use the specific 32-bit or 64-bit versions by accessing them through `goblin::elf64`, etc., but you will have to parse and/or construct the various components yourself.
//! In other words, there is no unified 32/64-bit `Elf` struct.
//!
//! # Note
//! To use the automagic ELF datatype union parser, you _must_ enable/opt-in to the `elf64`, `elf32`, and
//! `endian_fd` features if you disable `default`.
#[macro_use]
pub(crate) mod gnu_hash;
// These are shareable values for the 32/64 bit implementations.
//
// They are publicly re-exported by the pub-using module
pub mod compression_header;
pub mod header;
pub mod program_header;
pub mod section_header;
#[macro_use]
pub mod sym;
pub mod dynamic;
#[macro_use]
pub mod reloc;
pub mod note;
#[cfg(all(any(feature = "elf32", feature = "elf64"), feature = "alloc"))]
pub mod symver;
macro_rules! if_sylvan {
($($i:item)*) => ($(
#[cfg(all(feature = "elf32", feature = "elf64", feature = "endian_fd"))]
$i
)*)
}
if_sylvan! {
use scroll::{ctx, Pread, Endian};
use crate::strtab::Strtab;
use crate::error;
use crate::container::{Container, Ctx};
use alloc::vec::Vec;
use core::cmp;
pub use header::Header;
pub use program_header::ProgramHeader;
pub use section_header::SectionHeader;
pub use sym::Symtab;
pub use sym::Sym;
pub use dynamic::Dyn;
pub use dynamic::Dynamic;
pub use reloc::Reloc;
pub use reloc::RelocSection;
pub use symver::{VersymSection, VerdefSection, VerneedSection};
pub type ProgramHeaders = Vec<ProgramHeader>;
pub type SectionHeaders = Vec<SectionHeader>;
pub type ShdrIdx = usize;
#[derive(Debug)]
/// An ELF binary. The underlying data structures are read according to the headers byte order and container size (32 or 64).
pub struct Elf<'a> {
/// The ELF header, which provides a rudimentary index into the rest of the binary
pub header: Header,
/// The program headers; they primarily tell the kernel and the dynamic linker
/// how to load this binary
pub program_headers: ProgramHeaders,
/// The sections headers. These are strippable, never count on them being
/// here unless you're a static linker!
pub section_headers: SectionHeaders,
/// The section header string table
pub shdr_strtab: Strtab<'a>,
/// The string table for the dynamically accessible symbols
pub dynstrtab: Strtab<'a>,
/// The dynamically accessible symbols, i.e., exports, imports.
/// This is what the dynamic linker uses to dynamically load and link your binary,
/// or find imported symbols for binaries which dynamically link against your library
pub dynsyms: Symtab<'a>,
/// The debugging symbol table
pub syms: Symtab<'a>,
/// The string table for the symbol table
pub strtab: Strtab<'a>,
/// Contains dynamic linking information, with the _DYNAMIC array + a preprocessed DynamicInfo for that array
pub dynamic: Option<Dynamic>,
/// The dynamic relocation entries (strings, copy-data, etc.) with an addend
pub dynrelas: RelocSection<'a>,
/// The dynamic relocation entries without an addend
pub dynrels: RelocSection<'a>,
/// The plt relocation entries (procedure linkage table). For 32-bit binaries these are usually Rel (no addend)
pub pltrelocs: RelocSection<'a>,
/// Section relocations by section index (only present if this is a relocatable object file)
pub shdr_relocs: Vec<(ShdrIdx, RelocSection<'a>)>,
/// The binary's soname, if it has one
pub soname: Option<&'a str>,
/// The binary's program interpreter (e.g., dynamic linker), if it has one
pub interpreter: Option<&'a str>,
/// A list of this binary's dynamic libraries it uses, if there are any
pub libraries: Vec<&'a str>,
/// A list of runtime search paths for this binary's dynamic libraries it uses, if there
/// are any. (deprecated)
pub rpaths: Vec<&'a str>,
/// A list of runtime search paths for this binary's dynamic libraries it uses, if there
/// are any.
pub runpaths: Vec<&'a str>,
/// Whether this is a 64-bit elf or not
pub is_64: bool,
/// Whether this is a shared object or not
pub is_lib: bool,
/// The binaries entry point address, if it has one
pub entry: u64,
/// Whether the binary is little endian or not
pub little_endian: bool,
/// Contains the symbol version information from the optional section
/// [`SHT_GNU_VERSYM`][section_header::SHT_GNU_VERSYM] (GNU extenstion).
pub versym : Option<VersymSection<'a>>,
/// Contains the version definition information from the optional section
/// [`SHT_GNU_VERDEF`][section_header::SHT_GNU_VERDEF] (GNU extenstion).
pub verdef : Option<VerdefSection<'a>>,
/// Contains the version needed information from the optional section
/// [`SHT_GNU_VERNEED`][section_header::SHT_GNU_VERNEED] (GNU extenstion).
pub verneed : Option<VerneedSection<'a>>,
ctx: Ctx,
}
impl<'a> Elf<'a> {
/// Try to iterate notes in PT_NOTE program headers; returns `None` if there aren't any note headers in this binary
pub fn iter_note_headers(&self, data: &'a [u8]) -> Option<note::NoteIterator<'a>> {
let mut iters = vec![];
for phdr in &self.program_headers {
if phdr.p_type == program_header::PT_NOTE {
let offset = phdr.p_offset as usize;
let alignment = phdr.p_align as usize;
iters.push(note::NoteDataIterator {
data,
offset,
size: offset.saturating_add(phdr.p_filesz as usize),
ctx: (alignment, self.ctx)
});
}
}
if iters.is_empty() {
None
} else {
Some(note::NoteIterator {
iters: iters,
index: 0,
})
}
}
/// Try to iterate notes in SHT_NOTE sections; returns `None` if there aren't any note sections in this binary
///
/// If a section_name is given, only the section with the according name is iterated.
pub fn iter_note_sections(
&self,
data: &'a [u8],
section_name: Option<&str>,
) -> Option<note::NoteIterator<'a>> {
let mut iters = vec![];
for sect in &self.section_headers {
if sect.sh_type != section_header::SHT_NOTE {
continue;
}
if section_name.is_some() && self.shdr_strtab.get_at(sect.sh_name) != section_name {
continue;
}
let offset = sect.sh_offset as usize;
let alignment = sect.sh_addralign as usize;
iters.push(note::NoteDataIterator {
data,
offset,
size: offset.saturating_add(sect.sh_size as usize),
ctx: (alignment, self.ctx)
});
}
if iters.is_empty() {
None
} else {
Some(note::NoteIterator {
iters: iters,
index: 0,
})
}
}
pub fn is_object_file(&self) -> bool {
self.header.e_type == header::ET_REL
}
/// Parses the contents to get the Header only. This `bytes` buffer should contain at least the length for parsing Header.
pub fn parse_header(bytes: &'a [u8]) -> error::Result<Header> {
bytes.pread::<Header>(0)
}
/// Lazy parse the ELF contents. This function mainly just assembles an Elf struct. Once we have the struct, we can choose to parse whatever we want.
pub fn lazy_parse(header: Header) -> error::Result<Self> {
let misc = parse_misc(&header)?;
Ok(Elf {
header,
program_headers: vec![],
section_headers: Default::default(),
shdr_strtab: Default::default(),
dynamic: None,
dynsyms: Default::default(),
dynstrtab: Strtab::default(),
syms: Default::default(),
strtab: Default::default(),
dynrelas: Default::default(),
dynrels: Default::default(),
pltrelocs: Default::default(),
shdr_relocs: Default::default(),
soname: None,
interpreter: None,
libraries: vec![],
rpaths: vec![],
runpaths: vec![],
is_64: misc.is_64,
is_lib: misc.is_lib,
entry: misc.entry,
little_endian: misc.little_endian,
ctx: misc.ctx,
versym: None,
verdef: None,
verneed: None,
})
}
/// Parses the contents of the byte stream in `bytes`, and maybe returns a unified binary
pub fn parse(bytes: &'a [u8]) -> error::Result<Self> {
let header = Self::parse_header(bytes)?;
let misc = parse_misc(&header)?;
let ctx = misc.ctx;
let program_headers = ProgramHeader::parse(bytes, header.e_phoff as usize, header.e_phnum as usize, ctx)?;
let mut interpreter = None;
for ph in &program_headers {
if ph.p_type == program_header::PT_INTERP && ph.p_filesz != 0 {
let count = (ph.p_filesz - 1) as usize;
let offset = ph.p_offset as usize;
interpreter = bytes.pread_with::<&str>(offset, ::scroll::ctx::StrCtx::Length(count)).ok();
}
}
let section_headers = SectionHeader::parse(bytes, header.e_shoff as usize, header.e_shnum as usize, ctx)?;
let get_strtab = |section_headers: &[SectionHeader], mut section_idx: usize| {
if section_idx == section_header::SHN_XINDEX as usize {
if section_headers.is_empty() {
return Ok(Strtab::default())
}
section_idx = section_headers[0].sh_link as usize;
}
if section_idx >= section_headers.len() {
// FIXME: warn! here
Ok(Strtab::default())
} else {
let shdr = §ion_headers[section_idx];
shdr.check_size(bytes.len())?;
Strtab::parse(bytes, shdr.sh_offset as usize, shdr.sh_size as usize, 0x0)
}
};
let strtab_idx = header.e_shstrndx as usize;
let shdr_strtab = get_strtab(§ion_headers, strtab_idx)?;
let mut syms = Symtab::default();
let mut strtab = Strtab::default();
if let Some(shdr) = section_headers.iter().rfind(|shdr| shdr.sh_type as u32 == section_header::SHT_SYMTAB) {
let size = shdr.sh_entsize;
let count = if size == 0 { 0 } else { shdr.sh_size / size };
syms = Symtab::parse(bytes, shdr.sh_offset as usize, count as usize, ctx)?;
strtab = get_strtab(§ion_headers, shdr.sh_link as usize)?;
}
let mut is_pie = false;
let mut soname = None;
let mut libraries = vec![];
let mut rpaths = vec![];
let mut runpaths = vec![];
let mut dynsyms = Symtab::default();
let mut dynrelas = RelocSection::default();
let mut dynrels = RelocSection::default();
let mut pltrelocs = RelocSection::default();
let mut dynstrtab = Strtab::default();
let dynamic = Dynamic::parse(bytes, &program_headers, ctx)?;
if let Some(ref dynamic) = dynamic {
let dyn_info = &dynamic.info;
is_pie = dyn_info.flags_1 & dynamic::DF_1_PIE != 0;
dynstrtab = Strtab::parse(bytes,
dyn_info.strtab,
dyn_info.strsz,
0x0)?;
if dyn_info.soname != 0 {
// FIXME: warn! here
soname = dynstrtab.get_at(dyn_info.soname);
}
if dyn_info.needed_count > 0 {
libraries = dynamic.get_libraries(&dynstrtab);
}
for dyn_ in &dynamic.dyns {
if dyn_.d_tag == dynamic::DT_RPATH {
if let Some(path) = dynstrtab.get_at(dyn_.d_val as usize) {
rpaths.push(path);
}
} else if dyn_.d_tag == dynamic::DT_RUNPATH {
if let Some(path) = dynstrtab.get_at(dyn_.d_val as usize) {
runpaths.push(path);
}
}
}
// parse the dynamic relocations
dynrelas = RelocSection::parse(bytes, dyn_info.rela, dyn_info.relasz, true, ctx)?;
dynrels = RelocSection::parse(bytes, dyn_info.rel, dyn_info.relsz, false, ctx)?;
let is_rela = dyn_info.pltrel as u64 == dynamic::DT_RELA;
pltrelocs = RelocSection::parse(bytes, dyn_info.jmprel, dyn_info.pltrelsz, is_rela, ctx)?;
let mut num_syms = if let Some(gnu_hash) = dyn_info.gnu_hash {
gnu_hash_len(bytes, gnu_hash as usize, ctx)?
} else if let Some(hash) = dyn_info.hash {
hash_len(bytes, hash as usize, header.e_machine, ctx)?
} else {
0
};
let max_reloc_sym = dynrelas.iter()
.chain(dynrels.iter())
.chain(pltrelocs.iter())
.fold(0, |num, reloc| cmp::max(num, reloc.r_sym));
if max_reloc_sym != 0 {
num_syms = cmp::max(num_syms, max_reloc_sym + 1);
}
dynsyms = Symtab::parse(bytes, dyn_info.symtab, num_syms, ctx)?;
}
let mut shdr_relocs = vec![];
for (idx, section) in section_headers.iter().enumerate() {
let is_rela = section.sh_type == section_header::SHT_RELA;
if is_rela || section.sh_type == section_header::SHT_REL {
section.check_size(bytes.len())?;
let sh_relocs = RelocSection::parse(bytes, section.sh_offset as usize, section.sh_size as usize, is_rela, ctx)?;
shdr_relocs.push((idx, sh_relocs));
}
}
let versym = symver::VersymSection::parse(bytes, §ion_headers, ctx)?;
let verdef = symver::VerdefSection::parse(bytes, §ion_headers, ctx)?;
let verneed = symver::VerneedSection::parse(bytes, §ion_headers, ctx)?;
let is_lib = misc.is_lib && !is_pie;
Ok(Elf {
header,
program_headers,
section_headers,
shdr_strtab,
dynamic,
dynsyms,
dynstrtab,
syms,
strtab,
dynrelas,
dynrels,
pltrelocs,
shdr_relocs,
soname,
interpreter,
libraries,
rpaths,
runpaths,
is_64: misc.is_64,
is_lib,
entry: misc.entry,
little_endian: misc.little_endian,
ctx: ctx,
versym,
verdef,
verneed,
})
}
}
impl<'a> ctx::TryFromCtx<'a, (usize, Endian)> for Elf<'a> {
type Error = crate::error::Error;
fn try_from_ctx(src: &'a [u8], (_, _): (usize, Endian)) -> Result<(Elf<'a>, usize), Self::Error> {
let elf = Elf::parse(src)?;
Ok((elf, src.len()))
}
}
fn gnu_hash_len(bytes: &[u8], offset: usize, ctx: Ctx) -> error::Result<usize> {
let buckets_num = bytes.pread_with::<u32>(offset, ctx.le)? as usize;
let min_chain = bytes.pread_with::<u32>(offset + 4, ctx.le)? as usize;
let bloom_size = bytes.pread_with::<u32>(offset + 8, ctx.le)? as usize;
// We could handle min_chain==0 if we really had to, but it shouldn't happen.
if buckets_num == 0 || min_chain == 0 || bloom_size == 0 {
return Err(error::Error::Malformed(format!("Invalid DT_GNU_HASH: buckets_num={} min_chain={} bloom_size={}",
buckets_num, min_chain, bloom_size)));
}
// Find the last bucket.
let buckets_offset = offset + 16 + bloom_size * if ctx.container.is_big() { 8 } else { 4 };
let mut max_chain = 0;
for bucket in 0..buckets_num {
let chain = bytes.pread_with::<u32>(buckets_offset + bucket * 4, ctx.le)? as usize;
if max_chain < chain {
max_chain = chain;
}
}
if max_chain < min_chain {
return Ok(0);
}
// Find the last chain within the bucket.
let mut chain_offset = buckets_offset + buckets_num * 4 + (max_chain - min_chain) * 4;
loop {
let hash = bytes.pread_with::<u32>(chain_offset, ctx.le)?;
max_chain += 1;
chain_offset += 4;
if hash & 1 != 0 {
return Ok(max_chain);
}
}
}
fn hash_len(bytes: &[u8], offset: usize, machine: u16, ctx: Ctx) -> error::Result<usize> {
// Based on readelf code.
let nchain = if (machine == header::EM_FAKE_ALPHA || machine == header::EM_S390) && ctx.container.is_big() {
bytes.pread_with::<u64>(offset.saturating_add(4), ctx.le)? as usize
} else {
bytes.pread_with::<u32>(offset.saturating_add(4), ctx.le)? as usize
};
Ok(nchain)
}
struct Misc {
is_64: bool,
is_lib: bool,
entry: u64,
little_endian: bool,
ctx: Ctx,
}
fn parse_misc(header: &Header) -> error::Result<Misc> {
let entry = header.e_entry as usize;
let is_lib = header.e_type == header::ET_DYN;
let is_lsb = header.e_ident[header::EI_DATA] == header::ELFDATA2LSB;
let endianness = scroll::Endian::from(is_lsb);
let class = header.e_ident[header::EI_CLASS];
if class != header::ELFCLASS64 && class != header::ELFCLASS32 {
return Err(error::Error::Malformed(format!("Unknown values in ELF ident header: class: {} endianness: {}",
class,
header.e_ident[header::EI_DATA])));
}
let is_64 = class == header::ELFCLASS64;
let container = if is_64 { Container::Big } else { Container::Little };
let ctx = Ctx::new(container, endianness);
Ok(Misc{
is_64,
is_lib,
entry: entry as u64,
little_endian:is_lsb,
ctx,
})
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn parse_crt1_64bit() {
let crt1: Vec<u8> = include!("../../etc/crt1.rs");
match Elf::parse(&crt1) {
Ok(binary) => {
assert!(binary.is_64);
assert!(!binary.is_lib);
assert_eq!(binary.entry, 0);
assert!(binary.syms.get(1000).is_none());
assert!(binary.syms.get(5).is_some());
let syms = binary.syms.to_vec();
assert!(!binary.section_headers.is_empty());
for (i, sym) in syms.iter().enumerate() {
if i == 11 {
let symtab = binary.strtab;
println!("sym: {:?}", &sym);
assert_eq!(&symtab[sym.st_name], "_start");
break;
}
}
assert!(!syms.is_empty());
}
Err(err) => {
panic!("failed: {}", err);
}
}
}
#[test]
fn parse_crt1_32bit() {
let crt1: Vec<u8> = include!("../../etc/crt132.rs");
match Elf::parse(&crt1) {
Ok(binary) => {
assert!(!binary.is_64);
assert!(!binary.is_lib);
assert_eq!(binary.entry, 0);
assert!(binary.syms.get(1000).is_none());
assert!(binary.syms.get(5).is_some());
let syms = binary.syms.to_vec();
assert!(!binary.section_headers.is_empty());
for (i, sym) in syms.iter().enumerate() {
if i == 11 {
let symtab = binary.strtab;
println!("sym: {:?}", &sym);
assert_eq!(&symtab[sym.st_name], "__libc_csu_fini");
break;
}
}
assert!(!syms.is_empty());
}
Err(err) => {
panic!("failed: {}", err);
}
}
}
// See https://github.com/m4b/goblin/issues/257
#[test]
#[allow(unused)]
fn no_use_statement_conflict() {
use crate::elf::section_header::*;
use crate::elf::*;
fn f(_: SectionHeader) {}
}
}