pub type Point = Eq;
Expand description
A Vesta point in the projective coordinate space.
Aliased Type§
struct Point { /* private fields */ }
Implementations
Trait Implementations
Source§impl<'b> AddAssign<&'b Eq> for Eq
impl<'b> AddAssign<&'b Eq> for Eq
Source§fn add_assign(&mut self, rhs: &'b Eq)
fn add_assign(&mut self, rhs: &'b Eq)
Performs the
+=
operation. Read moreSource§impl<'b> AddAssign<&'b EqAffine> for Eq
impl<'b> AddAssign<&'b EqAffine> for Eq
Source§fn add_assign(&mut self, rhs: &'b EqAffine)
fn add_assign(&mut self, rhs: &'b EqAffine)
Performs the
+=
operation. Read moreSource§impl AddAssign<EqAffine> for Eq
impl AddAssign<EqAffine> for Eq
Source§fn add_assign(&mut self, rhs: EqAffine)
fn add_assign(&mut self, rhs: EqAffine)
Performs the
+=
operation. Read moreSource§impl AddAssign for Eq
impl AddAssign for Eq
Source§fn add_assign(&mut self, rhs: Eq)
fn add_assign(&mut self, rhs: Eq)
Performs the
+=
operation. Read moreSource§impl CofactorGroup for Eq
impl CofactorGroup for Eq
Source§type Subgroup = Eq
type Subgroup = Eq
The large prime-order subgroup in which cryptographic operations are performed.
If
Self
implements PrimeGroup
, then Self::Subgroup
may be Self
.Source§fn clear_cofactor(&self) -> Self
fn clear_cofactor(&self) -> Self
Maps
self
to the prime-order subgroup by multiplying this element by some
k
-multiple of the cofactor. Read moreSource§fn into_subgroup(self) -> CtOption<Self::Subgroup>
fn into_subgroup(self) -> CtOption<Self::Subgroup>
Returns
self
if it is contained in the prime-order subgroup. Read moreSource§fn is_torsion_free(&self) -> Choice
fn is_torsion_free(&self) -> Choice
Determines if this element is “torsion free”, i.e., is contained in the
prime-order subgroup. Read more
Source§fn is_small_order(&self) -> Choice
fn is_small_order(&self) -> Choice
Determines if this element is of small order. Read more
Source§impl ConditionallySelectable for Eq
impl ConditionallySelectable for Eq
Source§fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self
fn conditional_select(a: &Self, b: &Self, choice: Choice) -> Self
Source§fn conditional_assign(&mut self, other: &Self, choice: Choice)
fn conditional_assign(&mut self, other: &Self, choice: Choice)
Source§fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
Conditionally swap
self
and other
if choice == 1
; otherwise,
reassign both unto themselves. Read moreSource§impl ConstantTimeEq for Eq
impl ConstantTimeEq for Eq
Source§impl Curve for Eq
impl Curve for Eq
Source§type AffineRepr = EqAffine
type AffineRepr = EqAffine
The affine representation for this elliptic curve.
Source§fn batch_normalize(p: &[Self], q: &mut [Self::AffineRepr])
fn batch_normalize(p: &[Self], q: &mut [Self::AffineRepr])
Converts a batch of projective elements into affine elements. This function will
panic if
p.len() != q.len()
.Source§fn to_affine(&self) -> Self::AffineRepr
fn to_affine(&self) -> Self::AffineRepr
Converts this element into its affine representation.
Source§impl CurveExt for Eq
impl CurveExt for Eq
Source§fn endo(&self) -> Self
fn endo(&self) -> Self
Apply the curve endomorphism by multiplying the x-coordinate by an element of multiplicative order 3.
Source§fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Self + 'a>
fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Self + 'a>
Requests a hasher that accepts messages and returns near-uniformly
distributed elements in the group, given domain prefix
domain_prefix
. Read moreSource§fn new_jacobian(x: Self::Base, y: Self::Base, z: Self::Base) -> CtOption<Self>
fn new_jacobian(x: Self::Base, y: Self::Base, z: Self::Base) -> CtOption<Self>
Obtains a point given Jacobian coordinates $X : Y : Z$, failing
if the coordinates are not on the curve.
Source§fn is_on_curve(&self) -> Choice
fn is_on_curve(&self) -> Choice
Returns whether or not this element is on the curve; should
always be true unless an “unchecked” API was used.
Source§impl Group for Eq
impl Group for Eq
Source§impl GroupEncoding for Eq
impl GroupEncoding for Eq
Source§impl<'b> MulAssign<&'b Fp> for Eq
impl<'b> MulAssign<&'b Fp> for Eq
Source§fn mul_assign(&mut self, rhs: &'b Fp)
fn mul_assign(&mut self, rhs: &'b Fp)
Performs the
*=
operation. Read moreSource§impl MulAssign<Fp> for Eq
impl MulAssign<Fp> for Eq
Source§fn mul_assign(&mut self, rhs: Fp)
fn mul_assign(&mut self, rhs: Fp)
Performs the
*=
operation. Read moreSource§impl<'b> SubAssign<&'b Eq> for Eq
impl<'b> SubAssign<&'b Eq> for Eq
Source§fn sub_assign(&mut self, rhs: &'b Eq)
fn sub_assign(&mut self, rhs: &'b Eq)
Performs the
-=
operation. Read moreSource§impl<'b> SubAssign<&'b EqAffine> for Eq
impl<'b> SubAssign<&'b EqAffine> for Eq
Source§fn sub_assign(&mut self, rhs: &'b EqAffine)
fn sub_assign(&mut self, rhs: &'b EqAffine)
Performs the
-=
operation. Read moreSource§impl SubAssign<EqAffine> for Eq
impl SubAssign<EqAffine> for Eq
Source§fn sub_assign(&mut self, rhs: EqAffine)
fn sub_assign(&mut self, rhs: EqAffine)
Performs the
-=
operation. Read moreSource§impl SubAssign for Eq
impl SubAssign for Eq
Source§fn sub_assign(&mut self, rhs: Eq)
fn sub_assign(&mut self, rhs: Eq)
Performs the
-=
operation. Read moreSource§impl WnafGroup for Eq
impl WnafGroup for Eq
Source§fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize
Recommends a wNAF window size given the number of scalars you intend to multiply
a base by. Always returns a number between 2 and 22, inclusive.