Type Alias InnerChallenge

Source
pub type InnerChallenge = BinomialExtensionField<InnerVal, 4>;

Aliased Type§

struct InnerChallenge { /* private fields */ }

Trait Implementations§

Source§

impl Hintable<AsmConfig<MontyField31<BabyBearParameters>, BinomialExtensionField<MontyField31<BabyBearParameters>, 4>>> for InnerChallenge

Source§

impl<FA, const D: usize> Add<FA> for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the + operator.
Source§

fn add(self, rhs: FA) -> BinomialExtensionField<FA, D>

Performs the + operation. Read more
Source§

impl<FA, const D: usize> Add for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the + operator.
Source§

fn add( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>

Performs the + operation. Read more
Source§

impl<FA, const D: usize> AddAssign<FA> for BinomialExtensionField<FA, D>

Source§

fn add_assign(&mut self, rhs: FA)

Performs the += operation. Read more
Source§

impl<FA, const D: usize> AddAssign for BinomialExtensionField<FA, D>

Source§

fn add_assign(&mut self, rhs: BinomialExtensionField<FA, D>)

Performs the += operation. Read more
Source§

impl<FA, const D: usize> Clone for BinomialExtensionField<FA, D>
where FA: Clone,

Source§

fn clone(&self) -> BinomialExtensionField<FA, D>

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl<FA, const D: usize> Debug for BinomialExtensionField<FA, D>
where FA: Debug,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<FA, const D: usize> Default for BinomialExtensionField<FA, D>
where FA: FieldAlgebra,

Source§

fn default() -> BinomialExtensionField<FA, D>

Returns the “default value” for a type. Read more
Source§

impl<'de, FA, const D: usize> Deserialize<'de> for BinomialExtensionField<FA, D>
where FA: Deserialize<'de>,

Source§

fn deserialize<__D>( __deserializer: __D, ) -> Result<BinomialExtensionField<FA, D>, <__D as Deserializer<'de>>::Error>
where __D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<F, const D: usize> Display for BinomialExtensionField<F, D>

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
Source§

impl<F, const D: usize> Div for BinomialExtensionField<F, D>

Source§

type Output = BinomialExtensionField<F, D>

The resulting type after applying the / operator.
Source§

fn div( self, rhs: BinomialExtensionField<F, D>, ) -> <BinomialExtensionField<F, D> as Div>::Output

Performs the / operation. Read more
Source§

impl<F, const D: usize> DivAssign for BinomialExtensionField<F, D>

Source§

fn div_assign(&mut self, rhs: BinomialExtensionField<F, D>)

Performs the /= operation. Read more
Source§

impl<F, const D: usize> ExtensionField<F> for BinomialExtensionField<F, D>

Source§

type ExtensionPacking = BinomialExtensionField<<F as Field>::Packing, D>

Source§

fn is_in_basefield(&self) -> bool

Source§

fn as_base(&self) -> Option<Base>

Source§

fn ext_powers_packed(&self) -> Powers<Self::ExtensionPacking>

Construct an iterator which returns powers of self packed into ExtensionPacking elements. Read more
Source§

impl<F, const D: usize> Field for BinomialExtensionField<F, D>

Source§

const GENERATOR: BinomialExtensionField<F, D>

A generator of this field’s entire multiplicative group.
Source§

type Packing = BinomialExtensionField<F, D>

Source§

fn try_inverse(&self) -> Option<BinomialExtensionField<F, D>>

The multiplicative inverse of this field element, if it exists. Read more
Source§

fn halve(&self) -> BinomialExtensionField<F, D>

Computes input/2. Should be overwritten by most field implementations to use bitshifts. Will error if the field characteristic is 2.
Source§

fn order() -> BigUint

Source§

fn is_zero(&self) -> bool

Source§

fn is_one(&self) -> bool

Source§

fn div_2exp_u64(&self, exp: u64) -> Self

self / 2^exp
Source§

fn exp_u64_generic<FA>(val: FA, power: u64) -> FA
where FA: FieldAlgebra<F = Self>,

Exponentiation by a u64 power. This is similar to exp_u64, but more general in that it can be used with FieldAlgebras, not just this concrete field. Read more
Source§

fn inverse(&self) -> Self

Source§

fn multiplicative_group_factors() -> Vec<(BigUint, usize)>

A list of (factor, exponent) pairs.
Source§

fn bits() -> usize

Source§

impl<FA, const D: usize> FieldAlgebra for BinomialExtensionField<FA, D>

Source§

const ZERO: BinomialExtensionField<FA, D>

The additive identity of the algebra. Read more
Source§

const ONE: BinomialExtensionField<FA, D>

The multiplicative identity of the Algebra Read more
Source§

const TWO: BinomialExtensionField<FA, D>

The element in the algebra given by ONE + ONE. Read more
Source§

const NEG_ONE: BinomialExtensionField<FA, D>

The element in the algebra given by -ONE. Read more
Source§

type F = BinomialExtensionField<<FA as FieldAlgebra>::F, D>

Source§

fn from_f( f: <BinomialExtensionField<FA, D> as FieldAlgebra>::F, ) -> BinomialExtensionField<FA, D>

Interpret a field element as a commutative algebra element. Read more
Source§

fn from_canonical_u8(n: u8) -> BinomialExtensionField<FA, D>

Convert from a canonical u8. Read more
Source§

fn from_canonical_u16(n: u16) -> BinomialExtensionField<FA, D>

Convert from a canonical u16. Read more
Source§

fn from_canonical_u32(n: u32) -> BinomialExtensionField<FA, D>

Convert from a canonical u32. Read more
Source§

fn from_canonical_u64(n: u64) -> BinomialExtensionField<FA, D>

Convert from a canonical u64. Read more
Source§

fn from_canonical_usize(n: usize) -> BinomialExtensionField<FA, D>

Convert from a canonical usize. Read more
Source§

fn from_wrapped_u32(n: u32) -> BinomialExtensionField<FA, D>

Source§

fn from_wrapped_u64(n: u64) -> BinomialExtensionField<FA, D>

Source§

fn square(&self) -> BinomialExtensionField<FA, D>

The elementary function square(a) = a^2. Read more
Source§

fn zero_vec(len: usize) -> Vec<BinomialExtensionField<FA, D>>

Allocates a vector of zero elements of length len. Many operating systems zero pages before assigning them to a userspace process. In that case, our process should not need to write zeros, which would be redundant. However, the compiler may not always recognize this. Read more
Source§

fn from_bool(b: bool) -> Self

Convert from a bool.
Source§

fn double(&self) -> Self

The elementary function double(a) = 2*a. Read more
Source§

fn cube(&self) -> Self

The elementary function cube(a) = a^3. Read more
Source§

fn exp_u64(&self, power: u64) -> Self

Exponentiation by a u64 power. Read more
Source§

fn exp_const_u64<const POWER: u64>(&self) -> Self

Exponentiation by a constant power. Read more
Source§

fn exp_power_of_2(&self, power_log: usize) -> Self

Compute self^{2^power_log} by repeated squaring.
Source§

fn mul_2exp_u64(&self, exp: u64) -> Self

self * 2^exp
Source§

fn powers(&self) -> Powers<Self>

Construct an iterator which returns powers of self: self^0, self^1, self^2, ....
Source§

fn shifted_powers(&self, start: Self) -> Powers<Self>

Construct an iterator which returns powers of self shifted by start: start, start*self^1, start*self^2, ....
Source§

fn powers_packed<P>(&self) -> Powers<P>
where P: PackedField<Scalar = Self>,

Construct an iterator which returns powers of self packed into PackedField elements. Read more
Source§

fn shifted_powers_packed<P>(&self, start: Self) -> Powers<P>
where P: PackedField<Scalar = Self>,

Construct an iterator which returns powers of self shifted by start and packed into PackedField elements. Read more
Source§

fn dot_product<const N: usize>(u: &[Self; N], v: &[Self; N]) -> Self

Compute the dot product of two vectors.
Source§

impl<FA, const D: usize> FieldExtensionAlgebra<FA> for BinomialExtensionField<FA, D>

Source§

const D: usize = D

Source§

fn from_base(b: FA) -> BinomialExtensionField<FA, D>

Source§

fn from_base_slice(bs: &[FA]) -> BinomialExtensionField<FA, D>

Suppose this field extension is represented by the quotient ring B[X]/(f(X)) where B is Base and f is an irreducible polynomial of degree D. This function takes a slice bs of length at exactly D, and constructs the field element \sum_i bs[i] * X^i. Read more
Source§

fn from_base_fn<F>(f: F) -> BinomialExtensionField<FA, D>
where F: FnMut(usize) -> FA,

Similar to core:array::from_fn, with the same caveats as from_base_slice.
Source§

fn from_base_iter<I>(iter: I) -> BinomialExtensionField<FA, D>
where I: Iterator<Item = FA>,

Source§

fn as_base_slice(&self) -> &[FA]

Suppose this field extension is represented by the quotient ring B[X]/(f(X)) where B is Base and f is an irreducible polynomial of degree D. This function takes a field element \sum_i bs[i] * X^i and returns the coefficients as a slice bs of length at most D containing, from lowest degree to highest. Read more
Source§

fn monomial(exponent: usize) -> Self

Suppose this field extension is represented by the quotient ring B[X]/(f(X)) where B is Base and f is an irreducible polynomial of degree D. This function returns the field element X^exponent if exponent < D and panics otherwise. (The fact that f is not known at the point that this function is defined prevents implementing exponentiation of higher powers since the reduction cannot be performed.) Read more
Source§

impl<FA, const D: usize> From<FA> for BinomialExtensionField<FA, D>
where FA: FieldAlgebra,

Source§

fn from(x: FA) -> BinomialExtensionField<FA, D>

Converts to this type from the input type.
Source§

impl<F, const D: usize> HasFrobenius<F> for BinomialExtensionField<F, D>

Source§

fn frobenius(&self) -> BinomialExtensionField<F, D>

FrobeniusField automorphisms: x -> x^n, where n is the order of BaseField.

Source§

fn repeated_frobenius(&self, count: usize) -> BinomialExtensionField<F, D>

Repeated Frobenius automorphisms: x -> x^(n^count).

Follows precomputation suggestion in Section 11.3.3 of the Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Source§

fn frobenius_inv(&self) -> BinomialExtensionField<F, D>

Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.

Source§

fn minimal_poly(self) -> Vec<F>

Source§

fn galois_group(self) -> Vec<Self>

Source§

impl<FA, const D: usize> Hash for BinomialExtensionField<FA, D>
where FA: Hash,

Source§

fn hash<__H>(&self, state: &mut __H)
where __H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
Source§

impl<FA, const D: usize> Mul<FA> for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the * operator.
Source§

fn mul(self, rhs: FA) -> BinomialExtensionField<FA, D>

Performs the * operation. Read more
Source§

impl<FA, const D: usize> Mul for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the * operator.
Source§

fn mul( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>

Performs the * operation. Read more
Source§

impl<FA, const D: usize> MulAssign<FA> for BinomialExtensionField<FA, D>

Source§

fn mul_assign(&mut self, rhs: FA)

Performs the *= operation. Read more
Source§

impl<FA, const D: usize> MulAssign for BinomialExtensionField<FA, D>

Source§

fn mul_assign(&mut self, rhs: BinomialExtensionField<FA, D>)

Performs the *= operation. Read more
Source§

impl<FA, const D: usize> Neg for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the - operator.
Source§

fn neg(self) -> BinomialExtensionField<FA, D>

Performs the unary - operation. Read more
Source§

impl<FA, const D: usize> Ord for BinomialExtensionField<FA, D>
where FA: Ord,

Source§

fn cmp(&self, other: &BinomialExtensionField<FA, D>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
Source§

impl<FA, const D: usize> PartialEq for BinomialExtensionField<FA, D>
where FA: PartialEq,

Source§

fn eq(&self, other: &BinomialExtensionField<FA, D>) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl<FA, const D: usize> PartialOrd for BinomialExtensionField<FA, D>
where FA: PartialOrd,

Source§

fn partial_cmp(&self, other: &BinomialExtensionField<FA, D>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
1.0.0 · Source§

fn lt(&self, other: &Rhs) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
1.0.0 · Source§

fn le(&self, other: &Rhs) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
1.0.0 · Source§

fn gt(&self, other: &Rhs) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

fn ge(&self, other: &Rhs) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

impl<FA, const D: usize> Product for BinomialExtensionField<FA, D>

Source§

fn product<I>(iter: I) -> BinomialExtensionField<FA, D>
where I: Iterator<Item = BinomialExtensionField<FA, D>>,

Takes an iterator and generates Self from the elements by multiplying the items.
Source§

impl<FA, const D: usize> Serialize for BinomialExtensionField<FA, D>
where FA: Serialize,

Source§

fn serialize<__S>( &self, __serializer: __S, ) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>
where __S: Serializer,

Serialize this value into the given Serde serializer. Read more
Source§

impl<FA, const D: usize> Sub<FA> for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the - operator.
Source§

fn sub(self, rhs: FA) -> BinomialExtensionField<FA, D>

Performs the - operation. Read more
Source§

impl<FA, const D: usize> Sub for BinomialExtensionField<FA, D>

Source§

type Output = BinomialExtensionField<FA, D>

The resulting type after applying the - operator.
Source§

fn sub( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>

Performs the - operation. Read more
Source§

impl<FA, const D: usize> SubAssign<FA> for BinomialExtensionField<FA, D>

Source§

fn sub_assign(&mut self, rhs: FA)

Performs the -= operation. Read more
Source§

impl<FA, const D: usize> SubAssign for BinomialExtensionField<FA, D>

Source§

fn sub_assign(&mut self, rhs: BinomialExtensionField<FA, D>)

Performs the -= operation. Read more
Source§

impl<FA, const D: usize> Sum for BinomialExtensionField<FA, D>

Source§

fn sum<I>(iter: I) -> BinomialExtensionField<FA, D>
where I: Iterator<Item = BinomialExtensionField<FA, D>>,

Takes an iterator and generates Self from the elements by “summing up” the items.
Source§

impl<F, const D: usize> TwoAdicField for BinomialExtensionField<F, D>

Source§

const TWO_ADICITY: usize = F::EXT_TWO_ADICITY

The number of factors of two in this field’s multiplicative group.
Source§

fn two_adic_generator(bits: usize) -> BinomialExtensionField<F, D>

Returns a generator of the multiplicative group of order 2^bits. Assumes bits <= TWO_ADICITY, otherwise the result is undefined.
Source§

impl<FA, const D: usize> Copy for BinomialExtensionField<FA, D>
where FA: Copy,

Source§

impl<FA, const D: usize> Eq for BinomialExtensionField<FA, D>
where FA: Eq,

Source§

impl<F, const D: usize> Packable for BinomialExtensionField<F, D>

Source§

impl<FA, const D: usize> StructuralPartialEq for BinomialExtensionField<FA, D>