pub type InnerChallenge = BinomialExtensionField<InnerVal, 4>;
Aliased Type§
struct InnerChallenge { /* private fields */ }
Trait Implementations§
Source§impl Hintable<AsmConfig<MontyField31<BabyBearParameters>, BinomialExtensionField<MontyField31<BabyBearParameters>, 4>>> for InnerChallenge
impl Hintable<AsmConfig<MontyField31<BabyBearParameters>, BinomialExtensionField<MontyField31<BabyBearParameters>, 4>>> for InnerChallenge
type HintVariable = Ext<MontyField31<BabyBearParameters>, BinomialExtensionField<MontyField31<BabyBearParameters>, 4>>
fn read(builder: &mut Builder<InnerConfig>) -> Self::HintVariable
fn write(&self) -> Vec<Vec<<InnerConfig as Config>::N>>
fn witness(variable: &Self::HintVariable, builder: &mut Builder<C>)
Source§impl<FA, const D: usize> Add<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Add<FA> for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
+
operator.Source§fn add(self, rhs: FA) -> BinomialExtensionField<FA, D>
fn add(self, rhs: FA) -> BinomialExtensionField<FA, D>
Performs the
+
operation. Read moreSource§impl<FA, const D: usize> Add for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Add for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
+
operator.Source§fn add(
self,
rhs: BinomialExtensionField<FA, D>,
) -> BinomialExtensionField<FA, D>
fn add( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>
Performs the
+
operation. Read moreSource§impl<FA, const D: usize> AddAssign<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> AddAssign<FA> for BinomialExtensionField<FA, D>
Source§fn add_assign(&mut self, rhs: FA)
fn add_assign(&mut self, rhs: FA)
Performs the
+=
operation. Read moreSource§impl<FA, const D: usize> AddAssign for BinomialExtensionField<FA, D>
impl<FA, const D: usize> AddAssign for BinomialExtensionField<FA, D>
Source§fn add_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
fn add_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
Performs the
+=
operation. Read moreSource§impl<FA, const D: usize> Clone for BinomialExtensionField<FA, D>where
FA: Clone,
impl<FA, const D: usize> Clone for BinomialExtensionField<FA, D>where
FA: Clone,
Source§fn clone(&self) -> BinomialExtensionField<FA, D>
fn clone(&self) -> BinomialExtensionField<FA, D>
Returns a copy of the value. Read more
1.0.0 · Source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
Performs copy-assignment from
source
. Read moreSource§impl<FA, const D: usize> Default for BinomialExtensionField<FA, D>where
FA: FieldAlgebra,
impl<FA, const D: usize> Default for BinomialExtensionField<FA, D>where
FA: FieldAlgebra,
Source§fn default() -> BinomialExtensionField<FA, D>
fn default() -> BinomialExtensionField<FA, D>
Returns the “default value” for a type. Read more
Source§impl<'de, FA, const D: usize> Deserialize<'de> for BinomialExtensionField<FA, D>where
FA: Deserialize<'de>,
impl<'de, FA, const D: usize> Deserialize<'de> for BinomialExtensionField<FA, D>where
FA: Deserialize<'de>,
Source§fn deserialize<__D>(
__deserializer: __D,
) -> Result<BinomialExtensionField<FA, D>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
fn deserialize<__D>(
__deserializer: __D,
) -> Result<BinomialExtensionField<FA, D>, <__D as Deserializer<'de>>::Error>where
__D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Source§impl<F, const D: usize> Display for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> Display for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
Source§impl<F, const D: usize> Div for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> Div for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
Source§type Output = BinomialExtensionField<F, D>
type Output = BinomialExtensionField<F, D>
The resulting type after applying the
/
operator.Source§fn div(
self,
rhs: BinomialExtensionField<F, D>,
) -> <BinomialExtensionField<F, D> as Div>::Output
fn div( self, rhs: BinomialExtensionField<F, D>, ) -> <BinomialExtensionField<F, D> as Div>::Output
Performs the
/
operation. Read moreSource§impl<F, const D: usize> DivAssign for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> DivAssign for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
Source§fn div_assign(&mut self, rhs: BinomialExtensionField<F, D>)
fn div_assign(&mut self, rhs: BinomialExtensionField<F, D>)
Performs the
/=
operation. Read moreSource§impl<F, const D: usize> ExtensionField<F> for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> ExtensionField<F> for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
type ExtensionPacking = BinomialExtensionField<<F as Field>::Packing, D>
fn is_in_basefield(&self) -> bool
fn as_base(&self) -> Option<Base>
Source§fn ext_powers_packed(&self) -> Powers<Self::ExtensionPacking>
fn ext_powers_packed(&self) -> Powers<Self::ExtensionPacking>
Source§impl<F, const D: usize> Field for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> Field for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
Source§const GENERATOR: BinomialExtensionField<F, D>
const GENERATOR: BinomialExtensionField<F, D>
A generator of this field’s entire multiplicative group.
type Packing = BinomialExtensionField<F, D>
Source§fn try_inverse(&self) -> Option<BinomialExtensionField<F, D>>
fn try_inverse(&self) -> Option<BinomialExtensionField<F, D>>
The multiplicative inverse of this field element, if it exists. Read more
Source§fn halve(&self) -> BinomialExtensionField<F, D>
fn halve(&self) -> BinomialExtensionField<F, D>
Computes input/2.
Should be overwritten by most field implementations to use bitshifts.
Will error if the field characteristic is 2.
fn order() -> BigUint
fn is_zero(&self) -> bool
fn is_one(&self) -> bool
Source§fn div_2exp_u64(&self, exp: u64) -> Self
fn div_2exp_u64(&self, exp: u64) -> Self
self / 2^exp
Source§fn exp_u64_generic<FA>(val: FA, power: u64) -> FAwhere
FA: FieldAlgebra<F = Self>,
fn exp_u64_generic<FA>(val: FA, power: u64) -> FAwhere
FA: FieldAlgebra<F = Self>,
Exponentiation by a
u64
power. This is similar to exp_u64
, but more general in that it
can be used with FieldAlgebra
s, not just this concrete field. Read morefn inverse(&self) -> Self
Source§fn multiplicative_group_factors() -> Vec<(BigUint, usize)>
fn multiplicative_group_factors() -> Vec<(BigUint, usize)>
A list of (factor, exponent) pairs.
fn bits() -> usize
Source§impl<FA, const D: usize> FieldAlgebra for BinomialExtensionField<FA, D>
impl<FA, const D: usize> FieldAlgebra for BinomialExtensionField<FA, D>
Source§const ZERO: BinomialExtensionField<FA, D>
const ZERO: BinomialExtensionField<FA, D>
The additive identity of the algebra. Read more
Source§const ONE: BinomialExtensionField<FA, D>
const ONE: BinomialExtensionField<FA, D>
The multiplicative identity of the Algebra Read more
Source§const TWO: BinomialExtensionField<FA, D>
const TWO: BinomialExtensionField<FA, D>
The element in the algebra given by
ONE + ONE
. Read moreSource§const NEG_ONE: BinomialExtensionField<FA, D>
const NEG_ONE: BinomialExtensionField<FA, D>
The element in the algebra given by
-ONE
. Read moretype F = BinomialExtensionField<<FA as FieldAlgebra>::F, D>
Source§fn from_f(
f: <BinomialExtensionField<FA, D> as FieldAlgebra>::F,
) -> BinomialExtensionField<FA, D>
fn from_f( f: <BinomialExtensionField<FA, D> as FieldAlgebra>::F, ) -> BinomialExtensionField<FA, D>
Interpret a field element as a commutative algebra element. Read more
Source§fn from_canonical_u8(n: u8) -> BinomialExtensionField<FA, D>
fn from_canonical_u8(n: u8) -> BinomialExtensionField<FA, D>
Convert from a canonical
u8
. Read moreSource§fn from_canonical_u16(n: u16) -> BinomialExtensionField<FA, D>
fn from_canonical_u16(n: u16) -> BinomialExtensionField<FA, D>
Convert from a canonical
u16
. Read moreSource§fn from_canonical_u32(n: u32) -> BinomialExtensionField<FA, D>
fn from_canonical_u32(n: u32) -> BinomialExtensionField<FA, D>
Convert from a canonical
u32
. Read moreSource§fn from_canonical_u64(n: u64) -> BinomialExtensionField<FA, D>
fn from_canonical_u64(n: u64) -> BinomialExtensionField<FA, D>
Convert from a canonical
u64
. Read moreSource§fn from_canonical_usize(n: usize) -> BinomialExtensionField<FA, D>
fn from_canonical_usize(n: usize) -> BinomialExtensionField<FA, D>
Convert from a canonical
usize
. Read morefn from_wrapped_u32(n: u32) -> BinomialExtensionField<FA, D>
fn from_wrapped_u64(n: u64) -> BinomialExtensionField<FA, D>
Source§fn square(&self) -> BinomialExtensionField<FA, D>
fn square(&self) -> BinomialExtensionField<FA, D>
The elementary function
square(a) = a^2
. Read moreSource§fn zero_vec(len: usize) -> Vec<BinomialExtensionField<FA, D>>
fn zero_vec(len: usize) -> Vec<BinomialExtensionField<FA, D>>
Allocates a vector of zero elements of length
len
. Many operating systems zero pages
before assigning them to a userspace process. In that case, our process should not need to
write zeros, which would be redundant. However, the compiler may not always recognize this. Read moreSource§fn exp_const_u64<const POWER: u64>(&self) -> Self
fn exp_const_u64<const POWER: u64>(&self) -> Self
Exponentiation by a constant power. Read more
Source§fn exp_power_of_2(&self, power_log: usize) -> Self
fn exp_power_of_2(&self, power_log: usize) -> Self
Compute self^{2^power_log} by repeated squaring.
Source§fn mul_2exp_u64(&self, exp: u64) -> Self
fn mul_2exp_u64(&self, exp: u64) -> Self
self * 2^exp
Source§fn powers(&self) -> Powers<Self>
fn powers(&self) -> Powers<Self>
Construct an iterator which returns powers of
self: self^0, self^1, self^2, ...
.Source§fn shifted_powers(&self, start: Self) -> Powers<Self>
fn shifted_powers(&self, start: Self) -> Powers<Self>
Construct an iterator which returns powers of
self
shifted by start: start, start*self^1, start*self^2, ...
.Source§fn powers_packed<P>(&self) -> Powers<P>where
P: PackedField<Scalar = Self>,
fn powers_packed<P>(&self) -> Powers<P>where
P: PackedField<Scalar = Self>,
Source§fn shifted_powers_packed<P>(&self, start: Self) -> Powers<P>where
P: PackedField<Scalar = Self>,
fn shifted_powers_packed<P>(&self, start: Self) -> Powers<P>where
P: PackedField<Scalar = Self>,
Construct an iterator which returns powers of
self
shifted by start
and packed into PackedField
elements. Read moreSource§impl<FA, const D: usize> FieldExtensionAlgebra<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> FieldExtensionAlgebra<FA> for BinomialExtensionField<FA, D>
const D: usize = D
fn from_base(b: FA) -> BinomialExtensionField<FA, D>
Source§fn from_base_slice(bs: &[FA]) -> BinomialExtensionField<FA, D>
fn from_base_slice(bs: &[FA]) -> BinomialExtensionField<FA, D>
Suppose this field extension is represented by the quotient
ring B[X]/(f(X)) where B is
Base
and f is an irreducible
polynomial of degree D
. This function takes a slice bs
of
length at exactly D, and constructs the field element
\sum_i bs[i] * X^i. Read moreSource§fn from_base_fn<F>(f: F) -> BinomialExtensionField<FA, D>
fn from_base_fn<F>(f: F) -> BinomialExtensionField<FA, D>
Similar to
core:array::from_fn
, with the same caveats as
from_base_slice
.fn from_base_iter<I>(iter: I) -> BinomialExtensionField<FA, D>where
I: Iterator<Item = FA>,
Source§fn as_base_slice(&self) -> &[FA]
fn as_base_slice(&self) -> &[FA]
Suppose this field extension is represented by the quotient
ring B[X]/(f(X)) where B is
Base
and f is an irreducible
polynomial of degree D
. This function takes a field element
\sum_i bs[i] * X^i and returns the coefficients as a slice
bs
of length at most D containing, from lowest degree to
highest. Read moreSource§fn monomial(exponent: usize) -> Self
fn monomial(exponent: usize) -> Self
Suppose this field extension is represented by the quotient
ring B[X]/(f(X)) where B is
Base
and f is an irreducible
polynomial of degree D
. This function returns the field
element X^exponent
if exponent < D
and panics otherwise.
(The fact that f is not known at the point that this function
is defined prevents implementing exponentiation of higher
powers since the reduction cannot be performed.) Read moreSource§impl<FA, const D: usize> From<FA> for BinomialExtensionField<FA, D>where
FA: FieldAlgebra,
impl<FA, const D: usize> From<FA> for BinomialExtensionField<FA, D>where
FA: FieldAlgebra,
Source§fn from(x: FA) -> BinomialExtensionField<FA, D>
fn from(x: FA) -> BinomialExtensionField<FA, D>
Converts to this type from the input type.
Source§impl<F, const D: usize> HasFrobenius<F> for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
impl<F, const D: usize> HasFrobenius<F> for BinomialExtensionField<F, D>where
F: BinomiallyExtendable<D>,
Source§fn frobenius(&self) -> BinomialExtensionField<F, D>
fn frobenius(&self) -> BinomialExtensionField<F, D>
FrobeniusField automorphisms: x -> x^n, where n is the order of BaseField.
Source§fn repeated_frobenius(&self, count: usize) -> BinomialExtensionField<F, D>
fn repeated_frobenius(&self, count: usize) -> BinomialExtensionField<F, D>
Repeated Frobenius automorphisms: x -> x^(n^count).
Follows precomputation suggestion in Section 11.3.3 of the Handbook of Elliptic and Hyperelliptic Curve Cryptography.
Source§fn frobenius_inv(&self) -> BinomialExtensionField<F, D>
fn frobenius_inv(&self) -> BinomialExtensionField<F, D>
Algorithm 11.3.4 in Handbook of Elliptic and Hyperelliptic Curve Cryptography.
fn minimal_poly(self) -> Vec<F>
fn galois_group(self) -> Vec<Self>
Source§impl<FA, const D: usize> Mul<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Mul<FA> for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
*
operator.Source§fn mul(self, rhs: FA) -> BinomialExtensionField<FA, D>
fn mul(self, rhs: FA) -> BinomialExtensionField<FA, D>
Performs the
*
operation. Read moreSource§impl<FA, const D: usize> Mul for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Mul for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
*
operator.Source§fn mul(
self,
rhs: BinomialExtensionField<FA, D>,
) -> BinomialExtensionField<FA, D>
fn mul( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>
Performs the
*
operation. Read moreSource§impl<FA, const D: usize> MulAssign<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> MulAssign<FA> for BinomialExtensionField<FA, D>
Source§fn mul_assign(&mut self, rhs: FA)
fn mul_assign(&mut self, rhs: FA)
Performs the
*=
operation. Read moreSource§impl<FA, const D: usize> MulAssign for BinomialExtensionField<FA, D>
impl<FA, const D: usize> MulAssign for BinomialExtensionField<FA, D>
Source§fn mul_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
fn mul_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
Performs the
*=
operation. Read moreSource§impl<FA, const D: usize> Neg for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Neg for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
-
operator.Source§fn neg(self) -> BinomialExtensionField<FA, D>
fn neg(self) -> BinomialExtensionField<FA, D>
Performs the unary
-
operation. Read moreSource§impl<FA, const D: usize> Ord for BinomialExtensionField<FA, D>where
FA: Ord,
impl<FA, const D: usize> Ord for BinomialExtensionField<FA, D>where
FA: Ord,
Source§fn cmp(&self, other: &BinomialExtensionField<FA, D>) -> Ordering
fn cmp(&self, other: &BinomialExtensionField<FA, D>) -> Ordering
1.21.0 · Source§fn max(self, other: Self) -> Selfwhere
Self: Sized,
fn max(self, other: Self) -> Selfwhere
Self: Sized,
Compares and returns the maximum of two values. Read more
Source§impl<FA, const D: usize> PartialEq for BinomialExtensionField<FA, D>where
FA: PartialEq,
impl<FA, const D: usize> PartialEq for BinomialExtensionField<FA, D>where
FA: PartialEq,
Source§fn eq(&self, other: &BinomialExtensionField<FA, D>) -> bool
fn eq(&self, other: &BinomialExtensionField<FA, D>) -> bool
Tests for
self
and other
values to be equal, and is used by ==
.Source§impl<FA, const D: usize> PartialOrd for BinomialExtensionField<FA, D>where
FA: PartialOrd,
impl<FA, const D: usize> PartialOrd for BinomialExtensionField<FA, D>where
FA: PartialOrd,
Source§impl<FA, const D: usize> Product for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Product for BinomialExtensionField<FA, D>
Source§fn product<I>(iter: I) -> BinomialExtensionField<FA, D>where
I: Iterator<Item = BinomialExtensionField<FA, D>>,
fn product<I>(iter: I) -> BinomialExtensionField<FA, D>where
I: Iterator<Item = BinomialExtensionField<FA, D>>,
Takes an iterator and generates
Self
from the elements by multiplying
the items.Source§impl<FA, const D: usize> Serialize for BinomialExtensionField<FA, D>where
FA: Serialize,
impl<FA, const D: usize> Serialize for BinomialExtensionField<FA, D>where
FA: Serialize,
Source§fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
fn serialize<__S>(
&self,
__serializer: __S,
) -> Result<<__S as Serializer>::Ok, <__S as Serializer>::Error>where
__S: Serializer,
Serialize this value into the given Serde serializer. Read more
Source§impl<FA, const D: usize> Sub<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Sub<FA> for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
-
operator.Source§fn sub(self, rhs: FA) -> BinomialExtensionField<FA, D>
fn sub(self, rhs: FA) -> BinomialExtensionField<FA, D>
Performs the
-
operation. Read moreSource§impl<FA, const D: usize> Sub for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Sub for BinomialExtensionField<FA, D>
Source§type Output = BinomialExtensionField<FA, D>
type Output = BinomialExtensionField<FA, D>
The resulting type after applying the
-
operator.Source§fn sub(
self,
rhs: BinomialExtensionField<FA, D>,
) -> BinomialExtensionField<FA, D>
fn sub( self, rhs: BinomialExtensionField<FA, D>, ) -> BinomialExtensionField<FA, D>
Performs the
-
operation. Read moreSource§impl<FA, const D: usize> SubAssign<FA> for BinomialExtensionField<FA, D>
impl<FA, const D: usize> SubAssign<FA> for BinomialExtensionField<FA, D>
Source§fn sub_assign(&mut self, rhs: FA)
fn sub_assign(&mut self, rhs: FA)
Performs the
-=
operation. Read moreSource§impl<FA, const D: usize> SubAssign for BinomialExtensionField<FA, D>
impl<FA, const D: usize> SubAssign for BinomialExtensionField<FA, D>
Source§fn sub_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
fn sub_assign(&mut self, rhs: BinomialExtensionField<FA, D>)
Performs the
-=
operation. Read moreSource§impl<FA, const D: usize> Sum for BinomialExtensionField<FA, D>
impl<FA, const D: usize> Sum for BinomialExtensionField<FA, D>
Source§fn sum<I>(iter: I) -> BinomialExtensionField<FA, D>where
I: Iterator<Item = BinomialExtensionField<FA, D>>,
fn sum<I>(iter: I) -> BinomialExtensionField<FA, D>where
I: Iterator<Item = BinomialExtensionField<FA, D>>,
Takes an iterator and generates
Self
from the elements by “summing up”
the items.Source§impl<F, const D: usize> TwoAdicField for BinomialExtensionField<F, D>where
F: Field + HasTwoAdicBinomialExtension<D>,
impl<F, const D: usize> TwoAdicField for BinomialExtensionField<F, D>where
F: Field + HasTwoAdicBinomialExtension<D>,
Source§const TWO_ADICITY: usize = F::EXT_TWO_ADICITY
const TWO_ADICITY: usize = F::EXT_TWO_ADICITY
The number of factors of two in this field’s multiplicative group.
Source§fn two_adic_generator(bits: usize) -> BinomialExtensionField<F, D>
fn two_adic_generator(bits: usize) -> BinomialExtensionField<F, D>
Returns a generator of the multiplicative group of order
2^bits
.
Assumes bits <= TWO_ADICITY
, otherwise the result is undefined.