pub type Point = Ep;
Expand description
A Pallas point in the projective coordinate space.
Aliased Type§
struct Point { /* private fields */ }
Implementations
Trait Implementations
Source§impl<'b> AddAssign<&'b Ep> for Ep
impl<'b> AddAssign<&'b Ep> for Ep
Source§fn add_assign(&mut self, rhs: &'b Ep)
fn add_assign(&mut self, rhs: &'b Ep)
Performs the
+=
operation. Read moreSource§impl<'b> AddAssign<&'b EpAffine> for Ep
impl<'b> AddAssign<&'b EpAffine> for Ep
Source§fn add_assign(&mut self, rhs: &'b EpAffine)
fn add_assign(&mut self, rhs: &'b EpAffine)
Performs the
+=
operation. Read moreSource§impl AddAssign<EpAffine> for Ep
impl AddAssign<EpAffine> for Ep
Source§fn add_assign(&mut self, rhs: EpAffine)
fn add_assign(&mut self, rhs: EpAffine)
Performs the
+=
operation. Read moreSource§impl AddAssign for Ep
impl AddAssign for Ep
Source§fn add_assign(&mut self, rhs: Ep)
fn add_assign(&mut self, rhs: Ep)
Performs the
+=
operation. Read moreSource§impl CofactorGroup for Ep
impl CofactorGroup for Ep
Source§type Subgroup = Ep
type Subgroup = Ep
The large prime-order subgroup in which cryptographic operations are performed.
If
Self
implements PrimeGroup
, then Self::Subgroup
may be Self
.Source§fn clear_cofactor(&self) -> Ep
fn clear_cofactor(&self) -> Ep
Maps
self
to the prime-order subgroup by multiplying this element by some
k
-multiple of the cofactor. Read moreSource§fn into_subgroup(self) -> CtOption<<Ep as CofactorGroup>::Subgroup>
fn into_subgroup(self) -> CtOption<<Ep as CofactorGroup>::Subgroup>
Returns
self
if it is contained in the prime-order subgroup. Read moreSource§fn is_torsion_free(&self) -> Choice
fn is_torsion_free(&self) -> Choice
Determines if this element is “torsion free”, i.e., is contained in the
prime-order subgroup. Read more
Source§fn is_small_order(&self) -> Choice
fn is_small_order(&self) -> Choice
Determines if this element is of small order. Read more
Source§impl ConditionallySelectable for Ep
impl ConditionallySelectable for Ep
Source§fn conditional_assign(&mut self, other: &Self, choice: Choice)
fn conditional_assign(&mut self, other: &Self, choice: Choice)
Source§fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
fn conditional_swap(a: &mut Self, b: &mut Self, choice: Choice)
Conditionally swap
self
and other
if choice == 1
; otherwise,
reassign both unto themselves. Read moreSource§impl ConstantTimeEq for Ep
impl ConstantTimeEq for Ep
Source§impl Curve for Ep
impl Curve for Ep
Source§type AffineRepr = EpAffine
type AffineRepr = EpAffine
The affine representation for this elliptic curve.
Source§fn batch_normalize(p: &[Ep], q: &mut [<Ep as Curve>::AffineRepr])
fn batch_normalize(p: &[Ep], q: &mut [<Ep as Curve>::AffineRepr])
Converts a batch of projective elements into affine elements. This function will
panic if
p.len() != q.len()
.Source§impl CurveExt for Ep
impl CurveExt for Ep
Source§fn endo(&self) -> Ep
fn endo(&self) -> Ep
Apply the curve endomorphism by multiplying the x-coordinate by an element of multiplicative order 3.
Source§fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Ep + 'a>
fn hash_to_curve<'a>(domain_prefix: &'a str) -> Box<dyn Fn(&[u8]) -> Ep + 'a>
Requests a hasher that accepts messages and returns near-uniformly
distributed elements in the group, given domain prefix
domain_prefix
. Read moreSource§fn new_jacobian(
x: <Ep as CurveExt>::Base,
y: <Ep as CurveExt>::Base,
z: <Ep as CurveExt>::Base,
) -> CtOption<Ep>
fn new_jacobian( x: <Ep as CurveExt>::Base, y: <Ep as CurveExt>::Base, z: <Ep as CurveExt>::Base, ) -> CtOption<Ep>
Obtains a point given Jacobian coordinates $X : Y : Z$, failing
if the coordinates are not on the curve.
Source§fn is_on_curve(&self) -> Choice
fn is_on_curve(&self) -> Choice
Returns whether or not this element is on the curve; should
always be true unless an “unchecked” API was used.
Source§impl Group for Ep
impl Group for Ep
Source§impl GroupEncoding for Ep
impl GroupEncoding for Ep
Source§fn from_bytes(bytes: &<Ep as GroupEncoding>::Repr) -> CtOption<Ep>
fn from_bytes(bytes: &<Ep as GroupEncoding>::Repr) -> CtOption<Ep>
Attempts to deserialize a group element from its encoding.
Source§fn from_bytes_unchecked(bytes: &<Ep as GroupEncoding>::Repr) -> CtOption<Ep>
fn from_bytes_unchecked(bytes: &<Ep as GroupEncoding>::Repr) -> CtOption<Ep>
Attempts to deserialize a group element, not checking if the element is valid. Read more
Source§impl<'b> MulAssign<&'b Fq> for Ep
impl<'b> MulAssign<&'b Fq> for Ep
Source§fn mul_assign(&mut self, rhs: &'b Fq)
fn mul_assign(&mut self, rhs: &'b Fq)
Performs the
*=
operation. Read moreSource§impl MulAssign<Fq> for Ep
impl MulAssign<Fq> for Ep
Source§fn mul_assign(&mut self, rhs: Fq)
fn mul_assign(&mut self, rhs: Fq)
Performs the
*=
operation. Read moreSource§impl<'b> SubAssign<&'b Ep> for Ep
impl<'b> SubAssign<&'b Ep> for Ep
Source§fn sub_assign(&mut self, rhs: &'b Ep)
fn sub_assign(&mut self, rhs: &'b Ep)
Performs the
-=
operation. Read moreSource§impl<'b> SubAssign<&'b EpAffine> for Ep
impl<'b> SubAssign<&'b EpAffine> for Ep
Source§fn sub_assign(&mut self, rhs: &'b EpAffine)
fn sub_assign(&mut self, rhs: &'b EpAffine)
Performs the
-=
operation. Read moreSource§impl SubAssign<EpAffine> for Ep
impl SubAssign<EpAffine> for Ep
Source§fn sub_assign(&mut self, rhs: EpAffine)
fn sub_assign(&mut self, rhs: EpAffine)
Performs the
-=
operation. Read moreSource§impl SubAssign for Ep
impl SubAssign for Ep
Source§fn sub_assign(&mut self, rhs: Ep)
fn sub_assign(&mut self, rhs: Ep)
Performs the
-=
operation. Read moreSource§impl WnafGroup for Ep
impl WnafGroup for Ep
Source§fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize
fn recommended_wnaf_for_num_scalars(num_scalars: usize) -> usize
Recommends a wNAF window size given the number of scalars you intend to multiply
a base by. Always returns a number between 2 and 22, inclusive.