p256/arithmetic/scalar/blinded.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
//! Random blinding support for [`Scalar`]
// TODO(tarcieri): make this generic (along with `Scalar::invert_vartime`)
// and extract it into the `elliptic-curve` crate so it can be reused across curves
use super::Scalar;
use core::borrow::Borrow;
use elliptic_curve::{
group::ff::Field,
ops::Invert,
rand_core::{CryptoRng, RngCore},
subtle::CtOption,
zeroize::Zeroize,
};
/// Scalar blinded with a randomly generated masking value.
///
/// This provides a randomly blinded impl of [`Invert`] which is useful for
/// ECDSA ephemeral (`k`) scalars.
#[derive(Clone)]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub struct BlindedScalar {
/// Actual scalar value
scalar: Scalar,
/// Mask value
mask: Scalar,
}
impl BlindedScalar {
/// Create a new [`BlindedScalar`] from a scalar and a [`CryptoRng`]
pub fn new(scalar: Scalar, rng: impl CryptoRng + RngCore) -> Self {
Self {
scalar,
mask: Scalar::random(rng),
}
}
}
impl Borrow<Scalar> for BlindedScalar {
fn borrow(&self) -> &Scalar {
&self.scalar
}
}
impl Invert for BlindedScalar {
type Output = CtOption<Scalar>;
fn invert(&self) -> CtOption<Scalar> {
// prevent side channel analysis of scalar inversion by pre-and-post-multiplying
// with the random masking scalar
(self.scalar * self.mask)
.invert_vartime()
.map(|s| s * self.mask)
}
}
impl Zeroize for BlindedScalar {
fn zeroize(&mut self) {
self.scalar.zeroize();
self.mask.zeroize();
}
}
impl Drop for BlindedScalar {
fn drop(&mut self) {
self.zeroize();
}
}