p256/arithmetic/
affine.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
//! Affine points

#![allow(clippy::op_ref)]

use super::{FieldElement, ProjectivePoint, CURVE_EQUATION_A, CURVE_EQUATION_B, MODULUS};
use crate::{CompressedPoint, EncodedPoint, FieldBytes, NistP256, PublicKey, Scalar};
use core::ops::{Mul, Neg};
use elliptic_curve::{
    bigint::Encoding,
    group::{prime::PrimeCurveAffine, GroupEncoding},
    sec1::{self, FromEncodedPoint, ToCompactEncodedPoint, ToEncodedPoint},
    subtle::{Choice, ConditionallySelectable, ConstantTimeEq, CtOption},
    zeroize::DefaultIsZeroes,
    AffineArithmetic, AffineXCoordinate, Curve, DecompactPoint, DecompressPoint, Error, Result,
};

#[cfg(feature = "serde")]
use serdect::serde::{de, ser, Deserialize, Serialize};

impl AffineArithmetic for NistP256 {
    type AffinePoint = AffinePoint;
}

/// NIST P-256 (secp256r1) curve point expressed in affine coordinates.
///
/// # `serde` support
///
/// When the `serde` feature of this crate is enabled, the `Serialize` and
/// `Deserialize` traits are impl'd for this type.
///
/// The serialization uses the [SEC1] `Elliptic-Curve-Point-to-Octet-String`
/// encoding, serialized as binary.
///
/// When serialized with a text-based format, the SEC1 representation is
/// subsequently hex encoded.
///
/// [SEC1]: https://www.secg.org/sec1-v2.pdf
#[derive(Clone, Copy, Debug)]
#[cfg_attr(docsrs, doc(cfg(feature = "arithmetic")))]
pub struct AffinePoint {
    /// x-coordinate
    pub(crate) x: FieldElement,

    /// y-coordinate
    pub(crate) y: FieldElement,

    /// Is this point the point at infinity? 0 = no, 1 = yes
    ///
    /// This is a proxy for [`Choice`], but uses `u8` instead to permit `const`
    /// constructors for `IDENTITY` and `GENERATOR`.
    pub(super) infinity: u8,
}

impl AffinePoint {
    /// Additive identity of the group: the point at infinity.
    pub const IDENTITY: Self = Self {
        x: FieldElement::ZERO,
        y: FieldElement::ZERO,
        infinity: 1,
    };

    /// Base point of P-256.
    ///
    /// Defined in FIPS 186-4 § D.1.2.3:
    ///
    /// ```text
    /// Gₓ = 6b17d1f2 e12c4247 f8bce6e5 63a440f2 77037d81 2deb33a0 f4a13945 d898c296
    /// Gᵧ = 4fe342e2 fe1a7f9b 8ee7eb4a 7c0f9e16 2bce3357 6b315ece cbb64068 37bf51f5
    /// ```
    pub const GENERATOR: Self = Self {
        x: FieldElement([
            0xf4a1_3945_d898_c296,
            0x7703_7d81_2deb_33a0,
            0xf8bc_e6e5_63a4_40f2,
            0x6b17_d1f2_e12c_4247,
        ])
        .to_montgomery(),
        y: FieldElement([
            0xcbb6_4068_37bf_51f5,
            0x2bce_3357_6b31_5ece,
            0x8ee7_eb4a_7c0f_9e16,
            0x4fe3_42e2_fe1a_7f9b,
        ])
        .to_montgomery(),
        infinity: 0,
    };
}

impl PrimeCurveAffine for AffinePoint {
    type Scalar = Scalar;
    type Curve = ProjectivePoint;

    fn identity() -> AffinePoint {
        Self::IDENTITY
    }

    fn generator() -> AffinePoint {
        Self::GENERATOR
    }

    fn is_identity(&self) -> Choice {
        Choice::from(self.infinity)
    }

    fn to_curve(&self) -> ProjectivePoint {
        ProjectivePoint::from(*self)
    }
}

impl AffineXCoordinate<NistP256> for AffinePoint {
    fn x(&self) -> FieldBytes {
        self.x.to_bytes()
    }
}

impl ConditionallySelectable for AffinePoint {
    fn conditional_select(a: &AffinePoint, b: &AffinePoint, choice: Choice) -> AffinePoint {
        AffinePoint {
            x: FieldElement::conditional_select(&a.x, &b.x, choice),
            y: FieldElement::conditional_select(&a.y, &b.y, choice),
            infinity: u8::conditional_select(&a.infinity, &b.infinity, choice),
        }
    }
}

impl ConstantTimeEq for AffinePoint {
    fn ct_eq(&self, other: &AffinePoint) -> Choice {
        self.x.ct_eq(&other.x) & self.y.ct_eq(&other.y) & self.infinity.ct_eq(&other.infinity)
    }
}

impl Default for AffinePoint {
    fn default() -> Self {
        Self::IDENTITY
    }
}

impl DefaultIsZeroes for AffinePoint {}

impl Eq for AffinePoint {}

impl PartialEq for AffinePoint {
    fn eq(&self, other: &AffinePoint) -> bool {
        self.ct_eq(other).into()
    }
}

impl Mul<Scalar> for AffinePoint {
    type Output = ProjectivePoint;

    fn mul(self, scalar: Scalar) -> ProjectivePoint {
        ProjectivePoint::from(self) * scalar
    }
}

impl Mul<&Scalar> for AffinePoint {
    type Output = ProjectivePoint;

    fn mul(self, scalar: &Scalar) -> ProjectivePoint {
        ProjectivePoint::from(self) * scalar
    }
}

impl Neg for AffinePoint {
    type Output = AffinePoint;

    fn neg(self) -> Self::Output {
        AffinePoint {
            x: self.x,
            y: -self.y,
            infinity: self.infinity,
        }
    }
}

impl DecompressPoint<NistP256> for AffinePoint {
    fn decompress(x_bytes: &FieldBytes, y_is_odd: Choice) -> CtOption<Self> {
        FieldElement::from_bytes(x_bytes).and_then(|x| {
            let alpha = x * &x * &x + &(CURVE_EQUATION_A * &x) + &CURVE_EQUATION_B;
            let beta = alpha.sqrt();

            beta.map(|beta| {
                let y = FieldElement::conditional_select(
                    &(MODULUS - &beta),
                    &beta,
                    beta.is_odd().ct_eq(&y_is_odd),
                );

                Self { x, y, infinity: 0 }
            })
        })
    }
}

impl GroupEncoding for AffinePoint {
    type Repr = CompressedPoint;

    /// NOTE: not constant-time with respect to identity point
    fn from_bytes(bytes: &Self::Repr) -> CtOption<Self> {
        EncodedPoint::from_bytes(bytes)
            .map(|point| CtOption::new(point, Choice::from(1)))
            .unwrap_or_else(|_| {
                // SEC1 identity encoding is technically 1-byte 0x00, but the
                // `GroupEncoding` API requires a fixed-width `Repr`
                let is_identity = bytes.ct_eq(&Self::Repr::default());
                CtOption::new(EncodedPoint::identity(), is_identity)
            })
            .and_then(|point| Self::from_encoded_point(&point))
    }

    fn from_bytes_unchecked(bytes: &Self::Repr) -> CtOption<Self> {
        // No unchecked conversion possible for compressed points
        Self::from_bytes(bytes)
    }

    fn to_bytes(&self) -> Self::Repr {
        let encoded = self.to_encoded_point(true);
        let mut result = CompressedPoint::default();
        result[..encoded.len()].copy_from_slice(encoded.as_bytes());
        result
    }
}

impl DecompactPoint<NistP256> for AffinePoint {
    fn decompact(x_bytes: &FieldBytes) -> CtOption<Self> {
        FieldElement::from_bytes(x_bytes).and_then(|x| {
            let montgomery_y = (x * &x * &x + &(CURVE_EQUATION_A * &x) + &CURVE_EQUATION_B).sqrt();
            montgomery_y.map(|montgomery_y| {
                // Convert to canonical form for comparisons
                let y = montgomery_y.to_canonical();
                let p_y = MODULUS.subtract(&y);
                let (_, borrow) = p_y.informed_subtract(&y);
                let recovered_y = if borrow == 0 { y } else { p_y };
                AffinePoint {
                    x,
                    y: recovered_y.to_montgomery(),
                    infinity: 0,
                }
            })
        })
    }
}

impl FromEncodedPoint<NistP256> for AffinePoint {
    /// Attempts to parse the given [`EncodedPoint`] as an SEC1-encoded [`AffinePoint`].
    ///
    /// # Returns
    ///
    /// `None` value if `encoded_point` is not on the secp256r1 curve.
    fn from_encoded_point(encoded_point: &EncodedPoint) -> CtOption<Self> {
        match encoded_point.coordinates() {
            sec1::Coordinates::Identity => CtOption::new(Self::identity(), 1.into()),
            sec1::Coordinates::Compact { x } => AffinePoint::decompact(x),
            sec1::Coordinates::Compressed { x, y_is_odd } => {
                AffinePoint::decompress(x, Choice::from(y_is_odd as u8))
            }
            sec1::Coordinates::Uncompressed { x, y } => {
                let x = FieldElement::from_bytes(x);
                let y = FieldElement::from_bytes(y);

                x.and_then(|x| {
                    y.and_then(|y| {
                        // Check that the point is on the curve
                        let lhs = y * &y;
                        let rhs = x * &x * &x + &(CURVE_EQUATION_A * &x) + &CURVE_EQUATION_B;
                        let point = AffinePoint { x, y, infinity: 0 };
                        CtOption::new(point, lhs.ct_eq(&rhs))
                    })
                })
            }
        }
    }
}

impl ToEncodedPoint<NistP256> for AffinePoint {
    fn to_encoded_point(&self, compress: bool) -> EncodedPoint {
        EncodedPoint::conditional_select(
            &EncodedPoint::from_affine_coordinates(
                &self.x.to_bytes(),
                &self.y.to_bytes(),
                compress,
            ),
            &EncodedPoint::identity(),
            self.is_identity(),
        )
    }
}

impl ToCompactEncodedPoint<NistP256> for AffinePoint {
    /// Serialize this value as a  SEC1 compact [`EncodedPoint`]
    fn to_compact_encoded_point(&self) -> CtOption<EncodedPoint> {
        // Convert to canonical form for comparisons
        let y = self.y.to_canonical();
        let (p_y, borrow) = MODULUS.informed_subtract(&y);
        assert_eq!(borrow, 0);
        let (_, borrow) = p_y.informed_subtract(&y);

        // Reuse the CompressedPoint type since it's the same size as a compact point
        let mut bytes = CompressedPoint::default();
        bytes[0] = sec1::Tag::Compact.into();
        bytes[1..(<NistP256 as Curve>::UInt::BYTE_SIZE + 1)].copy_from_slice(&self.x.to_bytes());
        CtOption::new(
            EncodedPoint::from_bytes(bytes).expect("compact key"),
            borrow.ct_eq(&0),
        )
    }
}

impl TryFrom<EncodedPoint> for AffinePoint {
    type Error = Error;

    fn try_from(point: EncodedPoint) -> Result<AffinePoint> {
        AffinePoint::try_from(&point)
    }
}

impl TryFrom<&EncodedPoint> for AffinePoint {
    type Error = Error;

    fn try_from(point: &EncodedPoint) -> Result<AffinePoint> {
        Option::from(AffinePoint::from_encoded_point(point)).ok_or(Error)
    }
}

impl From<AffinePoint> for EncodedPoint {
    fn from(affine_point: AffinePoint) -> EncodedPoint {
        affine_point.to_encoded_point(false)
    }
}

impl From<PublicKey> for AffinePoint {
    fn from(public_key: PublicKey) -> AffinePoint {
        *public_key.as_affine()
    }
}

impl From<&PublicKey> for AffinePoint {
    fn from(public_key: &PublicKey) -> AffinePoint {
        AffinePoint::from(*public_key)
    }
}

impl TryFrom<AffinePoint> for PublicKey {
    type Error = Error;

    fn try_from(affine_point: AffinePoint) -> Result<PublicKey> {
        PublicKey::from_affine(affine_point)
    }
}

impl TryFrom<&AffinePoint> for PublicKey {
    type Error = Error;

    fn try_from(affine_point: &AffinePoint) -> Result<PublicKey> {
        PublicKey::try_from(*affine_point)
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl Serialize for AffinePoint {
    fn serialize<S>(&self, serializer: S) -> core::result::Result<S::Ok, S::Error>
    where
        S: ser::Serializer,
    {
        self.to_encoded_point(true).serialize(serializer)
    }
}

#[cfg(feature = "serde")]
#[cfg_attr(docsrs, doc(cfg(feature = "serde")))]
impl<'de> Deserialize<'de> for AffinePoint {
    fn deserialize<D>(deserializer: D) -> core::result::Result<Self, D::Error>
    where
        D: de::Deserializer<'de>,
    {
        EncodedPoint::deserialize(deserializer)?
            .try_into()
            .map_err(de::Error::custom)
    }
}

#[cfg(test)]
mod tests {
    use super::AffinePoint;
    use crate::EncodedPoint;
    use elliptic_curve::{
        group::{prime::PrimeCurveAffine, GroupEncoding},
        sec1::{FromEncodedPoint, ToCompactEncodedPoint, ToEncodedPoint},
    };
    use hex_literal::hex;

    const UNCOMPRESSED_BASEPOINT: &[u8] = &hex!(
        "046B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296
         4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5"
    );

    const COMPRESSED_BASEPOINT: &[u8] =
        &hex!("036B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296");

    // Tag compact with 05 as the first byte, to trigger tag based compaction
    const COMPACT_BASEPOINT: &[u8] =
        &hex!("058e38fc4ffe677662dde8e1a63fbcd45959d2a4c3004d27e98c4fedf2d0c14c01");

    // Tag uncompact basepoint with 04 as the first byte as it is uncompressed
    const UNCOMPACT_BASEPOINT: &[u8] = &hex!(
        "048e38fc4ffe677662dde8e1a63fbcd45959d2a4c3004d27e98c4fedf2d0c14c0
        13ca9d8667de0c07aa71d98b3c8065d2e97ab7bb9cb8776bcc0577a7ac58acd4e"
    );

    #[test]
    fn uncompressed_round_trip() {
        let pubkey = EncodedPoint::from_bytes(UNCOMPRESSED_BASEPOINT).unwrap();
        let point = AffinePoint::from_encoded_point(&pubkey).unwrap();
        assert_eq!(point, AffinePoint::generator());

        let res: EncodedPoint = point.into();
        assert_eq!(res, pubkey);
    }

    #[test]
    fn compressed_round_trip() {
        let pubkey = EncodedPoint::from_bytes(COMPRESSED_BASEPOINT).unwrap();
        let point = AffinePoint::from_encoded_point(&pubkey).unwrap();
        assert_eq!(point, AffinePoint::generator());

        let res: EncodedPoint = point.to_encoded_point(true);
        assert_eq!(res, pubkey);
    }

    #[test]
    fn uncompressed_to_compressed() {
        let encoded = EncodedPoint::from_bytes(UNCOMPRESSED_BASEPOINT).unwrap();

        let res = AffinePoint::from_encoded_point(&encoded)
            .unwrap()
            .to_encoded_point(true);

        assert_eq!(res.as_bytes(), COMPRESSED_BASEPOINT);
    }

    #[test]
    fn compressed_to_uncompressed() {
        let encoded = EncodedPoint::from_bytes(COMPRESSED_BASEPOINT).unwrap();

        let res = AffinePoint::from_encoded_point(&encoded)
            .unwrap()
            .to_encoded_point(false);

        assert_eq!(res.as_bytes(), UNCOMPRESSED_BASEPOINT);
    }

    #[test]
    fn affine_negation() {
        let basepoint = AffinePoint::generator();
        assert_eq!(-(-basepoint), basepoint);
    }

    #[test]
    fn compact_round_trip() {
        let pubkey = EncodedPoint::from_bytes(COMPACT_BASEPOINT).unwrap();
        assert!(pubkey.is_compact());

        let point = AffinePoint::from_encoded_point(&pubkey).unwrap();
        let res = point.to_compact_encoded_point().unwrap();
        assert_eq!(res, pubkey)
    }

    #[test]
    fn uncompact_to_compact() {
        let pubkey = EncodedPoint::from_bytes(UNCOMPACT_BASEPOINT).unwrap();
        assert_eq!(false, pubkey.is_compact());

        let point = AffinePoint::from_encoded_point(&pubkey).unwrap();
        let res = point.to_compact_encoded_point().unwrap();
        assert_eq!(res.as_bytes(), COMPACT_BASEPOINT)
    }

    #[test]
    fn compact_to_uncompact() {
        let pubkey = EncodedPoint::from_bytes(COMPACT_BASEPOINT).unwrap();
        assert!(pubkey.is_compact());

        let point = AffinePoint::from_encoded_point(&pubkey).unwrap();
        // Do not do compact encoding as we want to keep uncompressed point
        let res = point.to_encoded_point(false);
        assert_eq!(res.as_bytes(), UNCOMPACT_BASEPOINT);
    }

    #[test]
    fn identity_encoding() {
        // This is technically an invalid SEC1 encoding, but is preferable to panicking.
        assert_eq!([0; 33], AffinePoint::IDENTITY.to_bytes().as_slice());
        assert!(bool::from(
            AffinePoint::from_bytes(&AffinePoint::IDENTITY.to_bytes())
                .unwrap()
                .is_identity()
        ))
    }
}