num_bigint_dig/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
// Copyright 2018 Stichting Organism
//
// Copyright 2018 Friedel Ziegelmayer
//
// Copyright 2013-2014 The Rust Project Developers. See the COPYRIGHT
// file at the top-level directory of this distribution and at
// http://rust-lang.org/COPYRIGHT.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! A Big integer (signed version: `BigInt`, unsigned version: `BigUint`).
//!
//! A `BigUint` is represented as a vector of `BigDigit`s.
//! A `BigInt` is a combination of `BigUint` and `Sign`.
//!
//! Common numerical operations are overloaded, so we can treat them
//! the same way we treat other numbers.
//!
//! ## Example
//!
//! ```rust
//! extern crate num_bigint_dig as num_bigint;
//! extern crate num_traits;
//!
//! # fn main() {
//! use num_bigint::BigUint;
//! use num_traits::{Zero, One};
//! use std::mem::replace;
//!
//! // Calculate large fibonacci numbers.
//! fn fib(n: usize) -> BigUint {
//!     let mut f0: BigUint = Zero::zero();
//!     let mut f1: BigUint = One::one();
//!     for _ in 0..n {
//!         let f2 = f0 + &f1;
//!         // This is a low cost way of swapping f0 with f1 and f1 with f2.
//!         f0 = replace(&mut f1, f2);
//!     }
//!     f0
//! }
//!
//! // This is a very large number.
//! //println!("fib(1000) = {}", fib(1000));
//! # }
//! ```
//!
//! It's easy to generate large random numbers:
//!
#![cfg_attr(feature = "std", doc = " ```")]
#![cfg_attr(not(feature = "std"), doc = " ```ignore")]
//!
//! # #[cfg(feature = "rand")]
//! extern crate rand;
//! extern crate num_bigint_dig as bigint;
//!
//! # #[cfg(feature = "rand")]
//! # fn main() {
//! use bigint::{ToBigInt, RandBigInt};
//!
//! let mut rng = rand::thread_rng();
//! let a = rng.gen_bigint(1000);
//!
//! let low = -10000.to_bigint().unwrap();
//! let high = 10000.to_bigint().unwrap();
//! let b = rng.gen_bigint_range(&low, &high);
//!
//! // Probably an even larger number.
//! //println!("{}", a * b);
//! # }
//!
//! # #[cfg(not(feature = "rand"))]
//! # fn main() {
//! # }
//! ```
//!
//! ## Compatibility
//!
//! The `num-bigint-dig` crate is tested for rustc 1.56 and greater.
//!
//! ## `no_std` compatibility
//!
//! This crate is compatible with `no_std` environments.
//!
//! Note however that it still requires the `alloc` crate, so the user should
//! ensure that they set a `global_allocator`.
//!
//! To use in no_std environment, add the crate as such in your `Cargo.toml`
//! file:
//!
//! ```toml
//! [dependencies]
//! num-bigint-dig = { version = "0.8", default-features=false }
//! ```
//!
//! Every features should be compatible with no_std environment, so feel free to
//! add features like `prime`, `i128`, etc...

#![doc(html_root_url = "https://docs.rs/num-bigint/0.2")]
#![no_std]

extern crate alloc;

#[cfg(feature = "std")]
extern crate std;

#[macro_use]
extern crate smallvec;

#[cfg(feature = "prime")]
#[macro_use]
extern crate lazy_static;

extern crate num_integer as integer;

use core::fmt;
#[cfg(feature = "std")]
use std::error::Error;

#[macro_use]
mod macros;

mod bigint;
mod biguint;

#[cfg(feature = "prime")]
pub mod prime;

pub mod algorithms;
pub mod traits;

pub use crate::traits::*;

#[cfg(feature = "rand")]
mod bigrand;

#[cfg(target_pointer_width = "32")]
type UsizePromotion = u32;
#[cfg(target_pointer_width = "64")]
type UsizePromotion = u64;

#[cfg(target_pointer_width = "32")]
type IsizePromotion = i32;
#[cfg(target_pointer_width = "64")]
type IsizePromotion = i64;

#[derive(Debug, Clone, PartialEq, Eq)]
pub struct ParseBigIntError {
    kind: BigIntErrorKind,
}

#[derive(Debug, Clone, PartialEq, Eq)]
enum BigIntErrorKind {
    Empty,
    InvalidDigit,
}

impl ParseBigIntError {
    fn __description(&self) -> &str {
        use crate::BigIntErrorKind::*;
        match self.kind {
            Empty => "cannot parse integer from empty string",
            InvalidDigit => "invalid digit found in string",
        }
    }

    fn empty() -> Self {
        ParseBigIntError {
            kind: BigIntErrorKind::Empty,
        }
    }

    fn invalid() -> Self {
        ParseBigIntError {
            kind: BigIntErrorKind::InvalidDigit,
        }
    }
}

impl fmt::Display for ParseBigIntError {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.__description().fmt(f)
    }
}

#[cfg(feature = "std")]
impl Error for ParseBigIntError {
    fn description(&self) -> &str {
        self.__description()
    }
}

pub use crate::biguint::BigUint;
pub use crate::biguint::IntoBigUint;
pub use crate::biguint::ToBigUint;

pub use crate::bigint::negate_sign;
pub use crate::bigint::BigInt;
pub use crate::bigint::IntoBigInt;
pub use crate::bigint::Sign;
pub use crate::bigint::ToBigInt;

#[cfg(feature = "rand")]
pub use crate::bigrand::{RandBigInt, RandomBits, UniformBigInt, UniformBigUint};

#[cfg(feature = "prime")]
pub use bigrand::RandPrime;

#[cfg(not(feature = "u64_digit"))]
pub const VEC_SIZE: usize = 8;

#[cfg(feature = "u64_digit")]
pub const VEC_SIZE: usize = 4;

mod big_digit {
    /// A `BigDigit` is a `BigUint`'s composing element.
    #[cfg(not(feature = "u64_digit"))]
    pub type BigDigit = u32;
    #[cfg(feature = "u64_digit")]
    pub type BigDigit = u64;

    /// A `DoubleBigDigit` is the internal type used to do the computations.  Its
    /// size is the double of the size of `BigDigit`.
    #[cfg(not(feature = "u64_digit"))]
    pub type DoubleBigDigit = u64;
    #[cfg(feature = "u64_digit")]
    pub type DoubleBigDigit = u128;

    /// A `SignedDoubleBigDigit` is the signed version of `DoubleBigDigit`.
    #[cfg(not(feature = "u64_digit"))]
    pub type SignedDoubleBigDigit = i64;
    #[cfg(feature = "u64_digit")]
    pub type SignedDoubleBigDigit = i128;

    // `DoubleBigDigit` size dependent
    #[cfg(not(feature = "u64_digit"))]
    pub const BITS: usize = 32;
    #[cfg(feature = "u64_digit")]
    pub const BITS: usize = 64;

    #[cfg(not(feature = "u64_digit"))]
    const LO_MASK: DoubleBigDigit = (-1i32 as DoubleBigDigit) >> BITS;
    #[cfg(feature = "u64_digit")]
    const LO_MASK: DoubleBigDigit = (-1i64 as DoubleBigDigit) >> BITS;

    #[inline]
    fn get_hi(n: DoubleBigDigit) -> BigDigit {
        (n >> BITS) as BigDigit
    }
    #[inline]
    fn get_lo(n: DoubleBigDigit) -> BigDigit {
        (n & LO_MASK) as BigDigit
    }

    /// Split one `DoubleBigDigit` into two `BigDigit`s.
    #[inline]
    pub fn from_doublebigdigit(n: DoubleBigDigit) -> (BigDigit, BigDigit) {
        (get_hi(n), get_lo(n))
    }

    /// Join two `BigDigit`s into one `DoubleBigDigit`
    #[inline]
    pub fn to_doublebigdigit(hi: BigDigit, lo: BigDigit) -> DoubleBigDigit {
        (DoubleBigDigit::from(lo)) | ((DoubleBigDigit::from(hi)) << BITS)
    }
}