num_bigint_dig/algorithms/
gcd.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
use crate::big_digit::{BigDigit, DoubleBigDigit, BITS};
use crate::bigint::Sign::*;
use crate::bigint::{BigInt, ToBigInt};
use crate::biguint::{BigUint, IntDigits};
use crate::integer::Integer;
use alloc::borrow::Cow;
use core::ops::Neg;
use num_traits::{One, Signed, Zero};

/// XGCD sets z to the greatest common divisor of a and b and returns z.
/// If extended is true, XGCD returns their value such that z = a*x + b*y.
///
/// Allow the inputs a and b to be zero or negative to GCD
/// with the following definitions.
///
/// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
/// Regardless of the signs of a and b, z is always >= 0.
/// If a == b == 0, GCD sets z = x = y = 0.
/// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
/// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
pub fn xgcd(
    a_in: &BigInt,
    b_in: &BigInt,
    extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
    //If a == b == 0, GCD sets z = x = y = 0.
    if a_in.is_zero() && b_in.is_zero() {
        if extended {
            return (0.into(), Some(0.into()), Some(0.into()));
        } else {
            return (0.into(), None, None);
        }
    }

    //If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
    // if a_in.is_zero() && !b_in.is_zero() {
    if a_in.is_zero() {
        if extended {
            let mut y = BigInt::one();
            if b_in.sign == Minus {
                y.sign = Minus;
            }

            return (b_in.abs(), Some(0.into()), Some(y));
        } else {
            return (b_in.abs(), None, None);
        }
    }

    //If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
    //if !a_in.is_zero() && b_in.is_zero() {
    if b_in.is_zero() {
        if extended {
            let mut x = BigInt::one();
            if a_in.sign == Minus {
                x.sign = Minus;
            }

            return (a_in.abs(), Some(x), Some(0.into()));
        } else {
            return (a_in.abs(), None, None);
        }
    }
    lehmer_gcd(a_in, b_in, extended)
}

/// lehmerGCD sets z to the greatest common divisor of a and b,
/// which both must be != 0, and returns z.
/// If x or y are not nil, their values are set such that z = a*x + b*y.
/// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
/// This implementation uses the improved condition by Collins requiring only one
/// quotient and avoiding the possibility of single Word overflow.
/// See Jebelean, "Improving the multiprecision Euclidean algorithm",
/// Design and Implementation of Symbolic Computation Systems, pp 45-58.
/// The cosequences are updated according to Algorithm 10.45 from
/// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
fn lehmer_gcd(
    a_in: &BigInt,
    b_in: &BigInt,
    extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
    let mut a = a_in.clone();
    let mut b = b_in.clone();

    //essential absolute value on both a & b
    a.sign = Plus;
    b.sign = Plus;

    // `ua` (`ub`) tracks how many times input `a_in` has beeen accumulated into `a` (`b`).
    let mut ua = if extended { Some(1.into()) } else { None };
    let mut ub = if extended { Some(0.into()) } else { None };

    // temp variables for multiprecision update
    let mut q: BigInt = 0.into();
    let mut r: BigInt = 0.into();
    let mut s: BigInt = 0.into();
    let mut t: BigInt = 0.into();

    // Ensure that a >= b
    if a < b {
        core::mem::swap(&mut a, &mut b);
        core::mem::swap(&mut ua, &mut ub);
    }

    // loop invariant A >= B
    while b.len() > 1 {
        // Attempt to calculate in single-precision using leading words of a and b.
        let (u0, u1, v0, v1, even) = lehmer_simulate(&a, &b);

        // multiprecision step
        if v0 != 0 {
            // Simulate the effect of the single-precision steps using cosequences.
            // a = u0 * a + v0 * b
            // b = u1 * a + v1 * b
            lehmer_update(
                &mut a, &mut b, &mut q, &mut r, &mut s, &mut t, u0, u1, v0, v1, even,
            );

            if extended {
                // ua = u0 * ua + v0 * ub
                // ub = u1 * ua + v1 * ub
                lehmer_update(
                    ua.as_mut().unwrap(),
                    ub.as_mut().unwrap(),
                    &mut q,
                    &mut r,
                    &mut s,
                    &mut t,
                    u0,
                    u1,
                    v0,
                    v1,
                    even,
                );
            }
        } else {
            // Single-digit calculations failed to simulate any quotients.
            euclid_udpate(
                &mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
            );
        }
    }

    if b.len() > 0 {
        // base case if b is a single digit
        if a.len() > 1 {
            // a is longer than a single word, so one update is needed
            euclid_udpate(
                &mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
            );
        }

        if b.len() > 0 {
            // a and b are both single word
            let mut a_word = a.digits()[0];
            let mut b_word = b.digits()[0];

            if extended {
                let mut ua_word: BigDigit = 1;
                let mut ub_word: BigDigit = 0;
                let mut va: BigDigit = 0;
                let mut vb: BigDigit = 1;
                let mut even = true;

                while b_word != 0 {
                    let q = a_word / b_word;
                    let r = a_word % b_word;
                    a_word = b_word;
                    b_word = r;

                    let k = ua_word.wrapping_add(q.wrapping_mul(ub_word));
                    ua_word = ub_word;
                    ub_word = k;

                    let k = va.wrapping_add(q.wrapping_mul(vb));
                    va = vb;
                    vb = k;
                    even = !even;
                }

                t.data.set_digit(ua_word);
                s.data.set_digit(va);
                t.sign = if even { Plus } else { Minus };
                s.sign = if even { Minus } else { Plus };

                if let Some(ua) = ua.as_mut() {
                    t *= &*ua;
                    s *= ub.unwrap();

                    *ua = &t + &s;
                }
            } else {
                while b_word != 0 {
                    let quotient = a_word % b_word;
                    a_word = b_word;
                    b_word = quotient;
                }
            }
            a.digits_mut()[0] = a_word;
        }
    }

    a.normalize();

    //Sign fixing
    let mut neg_a: bool = false;
    if a_in.sign == Minus {
        neg_a = true;
    }

    let y = if let Some(ref mut ua) = ua {
        // y = (z - a * x) / b

        //a_in*x
        let mut tmp = a_in * &*ua;

        if neg_a {
            tmp.sign = tmp.sign.neg();
            ua.sign = ua.sign.neg();
        }

        //z - (a_in * x)
        tmp = &a - &tmp;
        tmp = &tmp / b_in;

        Some(tmp)
    } else {
        None
    };

    a.sign = Plus;

    (a, ua, y)
}

/// Uses the lehemer algorithm.
/// Based on https://github.com/golang/go/blob/master/src/math/big/int.go#L612
/// If `extended` is set, the Bezout coefficients are calculated, otherwise they are `None`.
pub fn extended_gcd(
    a_in: Cow<BigUint>,
    b_in: Cow<BigUint>,
    extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
    if a_in.is_zero() && b_in.is_zero() {
        if extended {
            return (b_in.to_bigint().unwrap(), Some(0.into()), Some(0.into()));
        } else {
            return (b_in.to_bigint().unwrap(), None, None);
        }
    }

    if a_in.is_zero() {
        if extended {
            return (b_in.to_bigint().unwrap(), Some(0.into()), Some(1.into()));
        } else {
            return (b_in.to_bigint().unwrap(), None, None);
        }
    }

    if b_in.is_zero() {
        if extended {
            return (a_in.to_bigint().unwrap(), Some(1.into()), Some(0.into()));
        } else {
            return (a_in.to_bigint().unwrap(), None, None);
        }
    }

    let a_in = a_in.to_bigint().unwrap();
    let b_in = b_in.to_bigint().unwrap();

    let mut a = a_in.clone();
    let mut b = b_in.clone();

    // `ua` (`ub`) tracks how many times input `a_in` has beeen accumulated into `a` (`b`).
    let mut ua = if extended { Some(1.into()) } else { None };
    let mut ub = if extended { Some(0.into()) } else { None };

    // Ensure that a >= b
    if a < b {
        core::mem::swap(&mut a, &mut b);
        core::mem::swap(&mut ua, &mut ub);
    }

    let mut q: BigInt = 0.into();
    let mut r: BigInt = 0.into();
    let mut s: BigInt = 0.into();
    let mut t: BigInt = 0.into();

    while b.len() > 1 {
        // Attempt to calculate in single-precision using leading words of a and b.
        let (u0, u1, v0, v1, even) = lehmer_simulate(&a, &b);

        // multiprecision step
        if v0 != 0 {
            // Simulate the effect of the single-precision steps using cosequences.
            // a = u0 * a + v0 * b
            // b = u1 * a + v1 * b
            lehmer_update(
                &mut a, &mut b, &mut q, &mut r, &mut s, &mut t, u0, u1, v0, v1, even,
            );

            if extended {
                // ua = u0 * ua + v0 * ub
                // ub = u1 * ua + v1 * ub
                lehmer_update(
                    ua.as_mut().unwrap(),
                    ub.as_mut().unwrap(),
                    &mut q,
                    &mut r,
                    &mut s,
                    &mut t,
                    u0,
                    u1,
                    v0,
                    v1,
                    even,
                );
            }
        } else {
            // Single-digit calculations failed to simulate any quotients.
            euclid_udpate(
                &mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
            );
        }
    }

    if b.len() > 0 {
        // base case if b is a single digit
        if a.len() > 1 {
            // a is longer than a single word, so one update is needed
            euclid_udpate(
                &mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
            );
        }

        if b.len() > 0 {
            // a and b are both single word
            let mut a_word = a.digits()[0];
            let mut b_word = b.digits()[0];

            if extended {
                let mut ua_word: BigDigit = 1;
                let mut ub_word: BigDigit = 0;
                let mut va: BigDigit = 0;
                let mut vb: BigDigit = 1;
                let mut even = true;

                while b_word != 0 {
                    let q = a_word / b_word;
                    let r = a_word % b_word;
                    a_word = b_word;
                    b_word = r;

                    let k = ua_word.wrapping_add(q.wrapping_mul(ub_word));
                    ua_word = ub_word;
                    ub_word = k;

                    let k = va.wrapping_add(q.wrapping_mul(vb));
                    va = vb;
                    vb = k;
                    even = !even;
                }

                t.data.set_digit(ua_word);
                s.data.set_digit(va);
                t.sign = if even { Plus } else { Minus };
                s.sign = if even { Minus } else { Plus };

                if let Some(ua) = ua.as_mut() {
                    t *= &*ua;
                    s *= ub.unwrap();

                    *ua = &t + &s;
                }
            } else {
                while b_word != 0 {
                    let quotient = a_word % b_word;
                    a_word = b_word;
                    b_word = quotient;
                }
            }
            a.digits_mut()[0] = a_word;
        }
    }

    a.normalize();

    let y = if let Some(ref ua) = ua {
        // y = (z - a * x) / b
        Some((&a - (&a_in * ua)) / &b_in)
    } else {
        None
    };

    (a, ua, y)
}

/// Attempts to simulate several Euclidean update steps using leading digits of `a` and `b`.
/// It returns `u0`, `u1`, `v0`, `v1` such that `a` and `b` can be updated as:
///     a = u0 * a + v0 * b
///     b = u1 * a + v1 * b
///
/// Requirements: `a >= b` and `b.len() > 2`.
/// Since we are calculating with full words to avoid overflow, `even` (the returned bool)
/// is used to track the sign of cosequences.
/// For even iterations: `u0, v1 >= 0 && u1, v0 <= 0`
/// For odd iterations: `u0, v1 <= && u1, v0 >= 0`
#[inline]
fn lehmer_simulate(a: &BigInt, b: &BigInt) -> (BigDigit, BigDigit, BigDigit, BigDigit, bool) {
    // m >= 2
    let m = b.len();
    // n >= m >= 2
    let n = a.len();

    // println!("a len is {:?}", a.len());
    // println!("b len is {:?}", b.len());

    // debug_assert!(m >= 2);
    // debug_assert!(n >= m);

    // extract the top word of bits from a and b
    let h = a.digits()[n - 1].leading_zeros();

    let mut a1: BigDigit = a.digits()[n - 1] << h
        | ((a.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit;

    // b may have implicit zero words in the high bits if the lengths differ
    let mut a2: BigDigit = if n == m {
        b.digits()[n - 1] << h
            | ((b.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit
    } else if n == m + 1 {
        ((b.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit
    } else {
        0
    };

    // odd, even tracking
    let mut even = false;

    let mut u0 = 0;
    let mut u1 = 1;
    let mut u2 = 0;

    let mut v0 = 0;
    let mut v1 = 0;
    let mut v2 = 1;

    // Calculate the quotient and cosequences using Collins' stoppting condition.
    while a2 >= v2 && a1.wrapping_sub(a2) >= v1 + v2 {
        let q = a1 / a2;
        let r = a1 % a2;

        a1 = a2;
        a2 = r;

        let k = u1 + q * u2;
        u0 = u1;
        u1 = u2;
        u2 = k;

        let k = v1 + q * v2;
        v0 = v1;
        v1 = v2;
        v2 = k;

        even = !even;
    }

    (u0, u1, v0, v1, even)
}

fn lehmer_update(
    a: &mut BigInt,
    b: &mut BigInt,
    q: &mut BigInt,
    r: &mut BigInt,
    s: &mut BigInt,
    t: &mut BigInt,
    u0: BigDigit,
    u1: BigDigit,
    v0: BigDigit,
    v1: BigDigit,
    even: bool,
) {
    t.data.set_digit(u0);
    s.data.set_digit(v0);
    if even {
        t.sign = Plus;
        s.sign = Minus
    } else {
        t.sign = Minus;
        s.sign = Plus;
    }

    *t *= &*a;
    *s *= &*b;

    r.data.set_digit(u1);
    q.data.set_digit(v1);
    if even {
        q.sign = Plus;
        r.sign = Minus
    } else {
        q.sign = Minus;
        r.sign = Plus;
    }

    *r *= &*a;
    *q *= &*b;

    *a = t + s;
    *b = r + q;
}

fn euclid_udpate(
    a: &mut BigInt,
    b: &mut BigInt,
    ua: &mut Option<BigInt>,
    ub: &mut Option<BigInt>,
    q: &mut BigInt,
    r: &mut BigInt,
    s: &mut BigInt,
    t: &mut BigInt,
    extended: bool,
) {
    let (q_new, r_new) = a.div_rem(b);
    *q = q_new;
    *r = r_new;

    core::mem::swap(a, b);
    core::mem::swap(b, r);

    if extended {
        // ua, ub = ub, ua - q * ub
        if let Some(ub) = ub.as_mut() {
            if let Some(ua) = ua.as_mut() {
                *t = ub.clone();
                *s = &*ub * &*q;
                *ub = &*ua - &*s;
                *ua = t.clone();
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use core::str::FromStr;

    use num_traits::FromPrimitive;

    #[cfg(feature = "rand")]
    use crate::bigrand::RandBigInt;
    #[cfg(feature = "rand")]
    use num_traits::{One, Zero};
    #[cfg(feature = "rand")]
    use rand::SeedableRng;
    #[cfg(feature = "rand")]
    use rand_xorshift::XorShiftRng;

    #[cfg(feature = "rand")]
    fn extended_gcd_euclid(a: Cow<BigUint>, b: Cow<BigUint>) -> (BigInt, BigInt, BigInt) {
        // use crate::bigint::ToBigInt;

        if a.is_zero() && b.is_zero() {
            return (0.into(), 0.into(), 0.into());
        }

        let (mut s, mut old_s) = (BigInt::zero(), BigInt::one());
        let (mut t, mut old_t) = (BigInt::one(), BigInt::zero());
        let (mut r, mut old_r) = (b.to_bigint().unwrap(), a.to_bigint().unwrap());

        while !r.is_zero() {
            let quotient = &old_r / &r;
            old_r = old_r - &quotient * &r;
            core::mem::swap(&mut old_r, &mut r);
            old_s = old_s - &quotient * &s;
            core::mem::swap(&mut old_s, &mut s);
            old_t = old_t - quotient * &t;
            core::mem::swap(&mut old_t, &mut t);
        }

        (old_r, old_s, old_t)
    }

    #[test]
    #[cfg(feature = "rand")]
    fn test_extended_gcd_assumptions() {
        let mut rng = XorShiftRng::from_seed([1u8; 16]);

        for i in 1usize..100 {
            for j in &[1usize, 64, 128] {
                //println!("round {} - {}", i, j);
                let a = rng.gen_biguint(i * j);
                let b = rng.gen_biguint(i * j);
                let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), true);

                let lhs = BigInt::from_biguint(Plus, a) * &s_k.unwrap();
                let rhs = BigInt::from_biguint(Plus, b) * &t_k.unwrap();

                assert_eq!(q.clone(), &lhs + &rhs, "{} = {} + {}", q, lhs, rhs);
            }
        }
    }

    #[test]
    fn test_extended_gcd_example() {
        // simple example for wikipedia
        let a = BigUint::from_u32(240).unwrap();
        let b = BigUint::from_u32(46).unwrap();
        let (q, s_k, t_k) = extended_gcd(Cow::Owned(a), Cow::Owned(b), true);

        assert_eq!(q, BigInt::from_i32(2).unwrap());
        assert_eq!(s_k.unwrap(), BigInt::from_i32(-9).unwrap());
        assert_eq!(t_k.unwrap(), BigInt::from_i32(47).unwrap());
    }

    #[test]
    fn test_extended_gcd_example_not_extended() {
        // simple example for wikipedia
        let a = BigUint::from_u32(240).unwrap();
        let b = BigUint::from_u32(46).unwrap();
        let (q, s_k, t_k) = extended_gcd(Cow::Owned(a), Cow::Owned(b), false);

        assert_eq!(q, BigInt::from_i32(2).unwrap());
        assert_eq!(s_k, None);
        assert_eq!(t_k, None);
    }

    #[test]
    fn test_extended_gcd_example_wolfram() {
        // https://www.wolframalpha.com/input/?i=ExtendedGCD%5B-565721958+,+4486780496%5D
        // https://github.com/Chia-Network/oldvdf-competition/blob/master/tests/test_classgroup.py#L109

        let a = BigInt::from_str("-565721958").unwrap();
        let b = BigInt::from_str("4486780496").unwrap();

        let (q, _s_k, _t_k) = xgcd(&a, &b, true);

        assert_eq!(q, BigInt::from(2));
        assert_eq!(_s_k, Some(BigInt::from(-1090996795)));
        assert_eq!(_t_k, Some(BigInt::from(-137559848)));
    }

    #[test]
    fn test_golang_bignum_negative() {
        // a <= 0 || b <= 0
        //d, x, y, a, b string
        let gcd_test_cases = [
            ["0", "0", "0", "0", "0"],
            ["7", "0", "1", "0", "7"],
            ["7", "0", "-1", "0", "-7"],
            ["11", "1", "0", "11", "0"],
            ["7", "-1", "-2", "-77", "35"],
            ["935", "-3", "8", "64515", "24310"],
            ["935", "-3", "-8", "64515", "-24310"],
            ["935", "3", "-8", "-64515", "-24310"],
            ["1", "-9", "47", "120", "23"],
            ["7", "1", "-2", "77", "35"],
            ["935", "-3", "8", "64515", "24310"],
            [
                "935000000000000000",
                "-3",
                "8",
                "64515000000000000000",
                "24310000000000000000",
            ],
            [
                "1",
                "-221",
                "22059940471369027483332068679400581064239780177629666810348940098015901108344",
                "98920366548084643601728869055592650835572950932266967461790948584315647051443",
                "991",
            ],
        ];

        for t in 0..gcd_test_cases.len() {
            //d, x, y, a, b string
            let d_case = BigInt::from_str(gcd_test_cases[t][0]).unwrap();
            let x_case = BigInt::from_str(gcd_test_cases[t][1]).unwrap();
            let y_case = BigInt::from_str(gcd_test_cases[t][2]).unwrap();
            let a_case = BigInt::from_str(gcd_test_cases[t][3]).unwrap();
            let b_case = BigInt::from_str(gcd_test_cases[t][4]).unwrap();

            // println!("round is {:?}", t);
            // println!("a len is {:?}", a_case.len());
            // println!("b len is {:?}", b_case.len());
            // println!("a is {:?}", &a_case);
            // println!("b is {:?}", &b_case);

            //testGcd(d, nil, nil, a, b)
            //testGcd(d, x, y, a, b)
            let (_d, _x, _y) = xgcd(&a_case, &b_case, false);

            assert_eq!(_d, d_case);
            assert_eq!(_x, None);
            assert_eq!(_y, None);

            let (_d, _x, _y) = xgcd(&a_case, &b_case, true);

            assert_eq!(_d, d_case);
            assert_eq!(_x.unwrap(), x_case);
            assert_eq!(_y.unwrap(), y_case);
        }
    }

    #[test]
    #[cfg(feature = "rand")]
    fn test_gcd_lehmer_euclid_extended() {
        let mut rng = XorShiftRng::from_seed([1u8; 16]);

        for i in 1usize..80 {
            for j in &[1usize, 16, 24, 64, 128] {
                //println!("round {} - {}", i, j);
                let a = rng.gen_biguint(i * j);
                let b = rng.gen_biguint(i * j);
                let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), true);

                let expected = extended_gcd_euclid(Cow::Borrowed(&a), Cow::Borrowed(&b));
                assert_eq!(q, expected.0);
                assert_eq!(s_k.unwrap(), expected.1);
                assert_eq!(t_k.unwrap(), expected.2);
            }
        }
    }

    #[test]
    #[cfg(feature = "rand")]
    fn test_gcd_lehmer_euclid_not_extended() {
        let mut rng = XorShiftRng::from_seed([1u8; 16]);

        for i in 1usize..80 {
            for j in &[1usize, 16, 24, 64, 128] {
                //println!("round {} - {}", i, j);
                let a = rng.gen_biguint(i * j);
                let b = rng.gen_biguint(i * j);
                let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), false);

                let expected = extended_gcd_euclid(Cow::Borrowed(&a), Cow::Borrowed(&b));
                assert_eq!(
                    q, expected.0,
                    "gcd({}, {}) = {} != {}",
                    &a, &b, &q, expected.0
                );
                assert_eq!(s_k, None);
                assert_eq!(t_k, None);
            }
        }
    }
}