num_bigint_dig/algorithms/gcd.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751
use crate::big_digit::{BigDigit, DoubleBigDigit, BITS};
use crate::bigint::Sign::*;
use crate::bigint::{BigInt, ToBigInt};
use crate::biguint::{BigUint, IntDigits};
use crate::integer::Integer;
use alloc::borrow::Cow;
use core::ops::Neg;
use num_traits::{One, Signed, Zero};
/// XGCD sets z to the greatest common divisor of a and b and returns z.
/// If extended is true, XGCD returns their value such that z = a*x + b*y.
///
/// Allow the inputs a and b to be zero or negative to GCD
/// with the following definitions.
///
/// If x or y are not nil, GCD sets their value such that z = a*x + b*y.
/// Regardless of the signs of a and b, z is always >= 0.
/// If a == b == 0, GCD sets z = x = y = 0.
/// If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
/// If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
pub fn xgcd(
a_in: &BigInt,
b_in: &BigInt,
extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
//If a == b == 0, GCD sets z = x = y = 0.
if a_in.is_zero() && b_in.is_zero() {
if extended {
return (0.into(), Some(0.into()), Some(0.into()));
} else {
return (0.into(), None, None);
}
}
//If a == 0 and b != 0, GCD sets z = |b|, x = 0, y = sign(b) * 1.
// if a_in.is_zero() && !b_in.is_zero() {
if a_in.is_zero() {
if extended {
let mut y = BigInt::one();
if b_in.sign == Minus {
y.sign = Minus;
}
return (b_in.abs(), Some(0.into()), Some(y));
} else {
return (b_in.abs(), None, None);
}
}
//If a != 0 and b == 0, GCD sets z = |a|, x = sign(a) * 1, y = 0.
//if !a_in.is_zero() && b_in.is_zero() {
if b_in.is_zero() {
if extended {
let mut x = BigInt::one();
if a_in.sign == Minus {
x.sign = Minus;
}
return (a_in.abs(), Some(x), Some(0.into()));
} else {
return (a_in.abs(), None, None);
}
}
lehmer_gcd(a_in, b_in, extended)
}
/// lehmerGCD sets z to the greatest common divisor of a and b,
/// which both must be != 0, and returns z.
/// If x or y are not nil, their values are set such that z = a*x + b*y.
/// See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm L.
/// This implementation uses the improved condition by Collins requiring only one
/// quotient and avoiding the possibility of single Word overflow.
/// See Jebelean, "Improving the multiprecision Euclidean algorithm",
/// Design and Implementation of Symbolic Computation Systems, pp 45-58.
/// The cosequences are updated according to Algorithm 10.45 from
/// Cohen et al. "Handbook of Elliptic and Hyperelliptic Curve Cryptography" pp 192.
fn lehmer_gcd(
a_in: &BigInt,
b_in: &BigInt,
extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
let mut a = a_in.clone();
let mut b = b_in.clone();
//essential absolute value on both a & b
a.sign = Plus;
b.sign = Plus;
// `ua` (`ub`) tracks how many times input `a_in` has beeen accumulated into `a` (`b`).
let mut ua = if extended { Some(1.into()) } else { None };
let mut ub = if extended { Some(0.into()) } else { None };
// temp variables for multiprecision update
let mut q: BigInt = 0.into();
let mut r: BigInt = 0.into();
let mut s: BigInt = 0.into();
let mut t: BigInt = 0.into();
// Ensure that a >= b
if a < b {
core::mem::swap(&mut a, &mut b);
core::mem::swap(&mut ua, &mut ub);
}
// loop invariant A >= B
while b.len() > 1 {
// Attempt to calculate in single-precision using leading words of a and b.
let (u0, u1, v0, v1, even) = lehmer_simulate(&a, &b);
// multiprecision step
if v0 != 0 {
// Simulate the effect of the single-precision steps using cosequences.
// a = u0 * a + v0 * b
// b = u1 * a + v1 * b
lehmer_update(
&mut a, &mut b, &mut q, &mut r, &mut s, &mut t, u0, u1, v0, v1, even,
);
if extended {
// ua = u0 * ua + v0 * ub
// ub = u1 * ua + v1 * ub
lehmer_update(
ua.as_mut().unwrap(),
ub.as_mut().unwrap(),
&mut q,
&mut r,
&mut s,
&mut t,
u0,
u1,
v0,
v1,
even,
);
}
} else {
// Single-digit calculations failed to simulate any quotients.
euclid_udpate(
&mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
);
}
}
if b.len() > 0 {
// base case if b is a single digit
if a.len() > 1 {
// a is longer than a single word, so one update is needed
euclid_udpate(
&mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
);
}
if b.len() > 0 {
// a and b are both single word
let mut a_word = a.digits()[0];
let mut b_word = b.digits()[0];
if extended {
let mut ua_word: BigDigit = 1;
let mut ub_word: BigDigit = 0;
let mut va: BigDigit = 0;
let mut vb: BigDigit = 1;
let mut even = true;
while b_word != 0 {
let q = a_word / b_word;
let r = a_word % b_word;
a_word = b_word;
b_word = r;
let k = ua_word.wrapping_add(q.wrapping_mul(ub_word));
ua_word = ub_word;
ub_word = k;
let k = va.wrapping_add(q.wrapping_mul(vb));
va = vb;
vb = k;
even = !even;
}
t.data.set_digit(ua_word);
s.data.set_digit(va);
t.sign = if even { Plus } else { Minus };
s.sign = if even { Minus } else { Plus };
if let Some(ua) = ua.as_mut() {
t *= &*ua;
s *= ub.unwrap();
*ua = &t + &s;
}
} else {
while b_word != 0 {
let quotient = a_word % b_word;
a_word = b_word;
b_word = quotient;
}
}
a.digits_mut()[0] = a_word;
}
}
a.normalize();
//Sign fixing
let mut neg_a: bool = false;
if a_in.sign == Minus {
neg_a = true;
}
let y = if let Some(ref mut ua) = ua {
// y = (z - a * x) / b
//a_in*x
let mut tmp = a_in * &*ua;
if neg_a {
tmp.sign = tmp.sign.neg();
ua.sign = ua.sign.neg();
}
//z - (a_in * x)
tmp = &a - &tmp;
tmp = &tmp / b_in;
Some(tmp)
} else {
None
};
a.sign = Plus;
(a, ua, y)
}
/// Uses the lehemer algorithm.
/// Based on https://github.com/golang/go/blob/master/src/math/big/int.go#L612
/// If `extended` is set, the Bezout coefficients are calculated, otherwise they are `None`.
pub fn extended_gcd(
a_in: Cow<BigUint>,
b_in: Cow<BigUint>,
extended: bool,
) -> (BigInt, Option<BigInt>, Option<BigInt>) {
if a_in.is_zero() && b_in.is_zero() {
if extended {
return (b_in.to_bigint().unwrap(), Some(0.into()), Some(0.into()));
} else {
return (b_in.to_bigint().unwrap(), None, None);
}
}
if a_in.is_zero() {
if extended {
return (b_in.to_bigint().unwrap(), Some(0.into()), Some(1.into()));
} else {
return (b_in.to_bigint().unwrap(), None, None);
}
}
if b_in.is_zero() {
if extended {
return (a_in.to_bigint().unwrap(), Some(1.into()), Some(0.into()));
} else {
return (a_in.to_bigint().unwrap(), None, None);
}
}
let a_in = a_in.to_bigint().unwrap();
let b_in = b_in.to_bigint().unwrap();
let mut a = a_in.clone();
let mut b = b_in.clone();
// `ua` (`ub`) tracks how many times input `a_in` has beeen accumulated into `a` (`b`).
let mut ua = if extended { Some(1.into()) } else { None };
let mut ub = if extended { Some(0.into()) } else { None };
// Ensure that a >= b
if a < b {
core::mem::swap(&mut a, &mut b);
core::mem::swap(&mut ua, &mut ub);
}
let mut q: BigInt = 0.into();
let mut r: BigInt = 0.into();
let mut s: BigInt = 0.into();
let mut t: BigInt = 0.into();
while b.len() > 1 {
// Attempt to calculate in single-precision using leading words of a and b.
let (u0, u1, v0, v1, even) = lehmer_simulate(&a, &b);
// multiprecision step
if v0 != 0 {
// Simulate the effect of the single-precision steps using cosequences.
// a = u0 * a + v0 * b
// b = u1 * a + v1 * b
lehmer_update(
&mut a, &mut b, &mut q, &mut r, &mut s, &mut t, u0, u1, v0, v1, even,
);
if extended {
// ua = u0 * ua + v0 * ub
// ub = u1 * ua + v1 * ub
lehmer_update(
ua.as_mut().unwrap(),
ub.as_mut().unwrap(),
&mut q,
&mut r,
&mut s,
&mut t,
u0,
u1,
v0,
v1,
even,
);
}
} else {
// Single-digit calculations failed to simulate any quotients.
euclid_udpate(
&mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
);
}
}
if b.len() > 0 {
// base case if b is a single digit
if a.len() > 1 {
// a is longer than a single word, so one update is needed
euclid_udpate(
&mut a, &mut b, &mut ua, &mut ub, &mut q, &mut r, &mut s, &mut t, extended,
);
}
if b.len() > 0 {
// a and b are both single word
let mut a_word = a.digits()[0];
let mut b_word = b.digits()[0];
if extended {
let mut ua_word: BigDigit = 1;
let mut ub_word: BigDigit = 0;
let mut va: BigDigit = 0;
let mut vb: BigDigit = 1;
let mut even = true;
while b_word != 0 {
let q = a_word / b_word;
let r = a_word % b_word;
a_word = b_word;
b_word = r;
let k = ua_word.wrapping_add(q.wrapping_mul(ub_word));
ua_word = ub_word;
ub_word = k;
let k = va.wrapping_add(q.wrapping_mul(vb));
va = vb;
vb = k;
even = !even;
}
t.data.set_digit(ua_word);
s.data.set_digit(va);
t.sign = if even { Plus } else { Minus };
s.sign = if even { Minus } else { Plus };
if let Some(ua) = ua.as_mut() {
t *= &*ua;
s *= ub.unwrap();
*ua = &t + &s;
}
} else {
while b_word != 0 {
let quotient = a_word % b_word;
a_word = b_word;
b_word = quotient;
}
}
a.digits_mut()[0] = a_word;
}
}
a.normalize();
let y = if let Some(ref ua) = ua {
// y = (z - a * x) / b
Some((&a - (&a_in * ua)) / &b_in)
} else {
None
};
(a, ua, y)
}
/// Attempts to simulate several Euclidean update steps using leading digits of `a` and `b`.
/// It returns `u0`, `u1`, `v0`, `v1` such that `a` and `b` can be updated as:
/// a = u0 * a + v0 * b
/// b = u1 * a + v1 * b
///
/// Requirements: `a >= b` and `b.len() > 2`.
/// Since we are calculating with full words to avoid overflow, `even` (the returned bool)
/// is used to track the sign of cosequences.
/// For even iterations: `u0, v1 >= 0 && u1, v0 <= 0`
/// For odd iterations: `u0, v1 <= && u1, v0 >= 0`
#[inline]
fn lehmer_simulate(a: &BigInt, b: &BigInt) -> (BigDigit, BigDigit, BigDigit, BigDigit, bool) {
// m >= 2
let m = b.len();
// n >= m >= 2
let n = a.len();
// println!("a len is {:?}", a.len());
// println!("b len is {:?}", b.len());
// debug_assert!(m >= 2);
// debug_assert!(n >= m);
// extract the top word of bits from a and b
let h = a.digits()[n - 1].leading_zeros();
let mut a1: BigDigit = a.digits()[n - 1] << h
| ((a.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit;
// b may have implicit zero words in the high bits if the lengths differ
let mut a2: BigDigit = if n == m {
b.digits()[n - 1] << h
| ((b.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit
} else if n == m + 1 {
((b.digits()[n - 2] as DoubleBigDigit) >> (BITS as u32 - h)) as BigDigit
} else {
0
};
// odd, even tracking
let mut even = false;
let mut u0 = 0;
let mut u1 = 1;
let mut u2 = 0;
let mut v0 = 0;
let mut v1 = 0;
let mut v2 = 1;
// Calculate the quotient and cosequences using Collins' stoppting condition.
while a2 >= v2 && a1.wrapping_sub(a2) >= v1 + v2 {
let q = a1 / a2;
let r = a1 % a2;
a1 = a2;
a2 = r;
let k = u1 + q * u2;
u0 = u1;
u1 = u2;
u2 = k;
let k = v1 + q * v2;
v0 = v1;
v1 = v2;
v2 = k;
even = !even;
}
(u0, u1, v0, v1, even)
}
fn lehmer_update(
a: &mut BigInt,
b: &mut BigInt,
q: &mut BigInt,
r: &mut BigInt,
s: &mut BigInt,
t: &mut BigInt,
u0: BigDigit,
u1: BigDigit,
v0: BigDigit,
v1: BigDigit,
even: bool,
) {
t.data.set_digit(u0);
s.data.set_digit(v0);
if even {
t.sign = Plus;
s.sign = Minus
} else {
t.sign = Minus;
s.sign = Plus;
}
*t *= &*a;
*s *= &*b;
r.data.set_digit(u1);
q.data.set_digit(v1);
if even {
q.sign = Plus;
r.sign = Minus
} else {
q.sign = Minus;
r.sign = Plus;
}
*r *= &*a;
*q *= &*b;
*a = t + s;
*b = r + q;
}
fn euclid_udpate(
a: &mut BigInt,
b: &mut BigInt,
ua: &mut Option<BigInt>,
ub: &mut Option<BigInt>,
q: &mut BigInt,
r: &mut BigInt,
s: &mut BigInt,
t: &mut BigInt,
extended: bool,
) {
let (q_new, r_new) = a.div_rem(b);
*q = q_new;
*r = r_new;
core::mem::swap(a, b);
core::mem::swap(b, r);
if extended {
// ua, ub = ub, ua - q * ub
if let Some(ub) = ub.as_mut() {
if let Some(ua) = ua.as_mut() {
*t = ub.clone();
*s = &*ub * &*q;
*ub = &*ua - &*s;
*ua = t.clone();
}
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::str::FromStr;
use num_traits::FromPrimitive;
#[cfg(feature = "rand")]
use crate::bigrand::RandBigInt;
#[cfg(feature = "rand")]
use num_traits::{One, Zero};
#[cfg(feature = "rand")]
use rand::SeedableRng;
#[cfg(feature = "rand")]
use rand_xorshift::XorShiftRng;
#[cfg(feature = "rand")]
fn extended_gcd_euclid(a: Cow<BigUint>, b: Cow<BigUint>) -> (BigInt, BigInt, BigInt) {
// use crate::bigint::ToBigInt;
if a.is_zero() && b.is_zero() {
return (0.into(), 0.into(), 0.into());
}
let (mut s, mut old_s) = (BigInt::zero(), BigInt::one());
let (mut t, mut old_t) = (BigInt::one(), BigInt::zero());
let (mut r, mut old_r) = (b.to_bigint().unwrap(), a.to_bigint().unwrap());
while !r.is_zero() {
let quotient = &old_r / &r;
old_r = old_r - "ient * &r;
core::mem::swap(&mut old_r, &mut r);
old_s = old_s - "ient * &s;
core::mem::swap(&mut old_s, &mut s);
old_t = old_t - quotient * &t;
core::mem::swap(&mut old_t, &mut t);
}
(old_r, old_s, old_t)
}
#[test]
#[cfg(feature = "rand")]
fn test_extended_gcd_assumptions() {
let mut rng = XorShiftRng::from_seed([1u8; 16]);
for i in 1usize..100 {
for j in &[1usize, 64, 128] {
//println!("round {} - {}", i, j);
let a = rng.gen_biguint(i * j);
let b = rng.gen_biguint(i * j);
let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), true);
let lhs = BigInt::from_biguint(Plus, a) * &s_k.unwrap();
let rhs = BigInt::from_biguint(Plus, b) * &t_k.unwrap();
assert_eq!(q.clone(), &lhs + &rhs, "{} = {} + {}", q, lhs, rhs);
}
}
}
#[test]
fn test_extended_gcd_example() {
// simple example for wikipedia
let a = BigUint::from_u32(240).unwrap();
let b = BigUint::from_u32(46).unwrap();
let (q, s_k, t_k) = extended_gcd(Cow::Owned(a), Cow::Owned(b), true);
assert_eq!(q, BigInt::from_i32(2).unwrap());
assert_eq!(s_k.unwrap(), BigInt::from_i32(-9).unwrap());
assert_eq!(t_k.unwrap(), BigInt::from_i32(47).unwrap());
}
#[test]
fn test_extended_gcd_example_not_extended() {
// simple example for wikipedia
let a = BigUint::from_u32(240).unwrap();
let b = BigUint::from_u32(46).unwrap();
let (q, s_k, t_k) = extended_gcd(Cow::Owned(a), Cow::Owned(b), false);
assert_eq!(q, BigInt::from_i32(2).unwrap());
assert_eq!(s_k, None);
assert_eq!(t_k, None);
}
#[test]
fn test_extended_gcd_example_wolfram() {
// https://www.wolframalpha.com/input/?i=ExtendedGCD%5B-565721958+,+4486780496%5D
// https://github.com/Chia-Network/oldvdf-competition/blob/master/tests/test_classgroup.py#L109
let a = BigInt::from_str("-565721958").unwrap();
let b = BigInt::from_str("4486780496").unwrap();
let (q, _s_k, _t_k) = xgcd(&a, &b, true);
assert_eq!(q, BigInt::from(2));
assert_eq!(_s_k, Some(BigInt::from(-1090996795)));
assert_eq!(_t_k, Some(BigInt::from(-137559848)));
}
#[test]
fn test_golang_bignum_negative() {
// a <= 0 || b <= 0
//d, x, y, a, b string
let gcd_test_cases = [
["0", "0", "0", "0", "0"],
["7", "0", "1", "0", "7"],
["7", "0", "-1", "0", "-7"],
["11", "1", "0", "11", "0"],
["7", "-1", "-2", "-77", "35"],
["935", "-3", "8", "64515", "24310"],
["935", "-3", "-8", "64515", "-24310"],
["935", "3", "-8", "-64515", "-24310"],
["1", "-9", "47", "120", "23"],
["7", "1", "-2", "77", "35"],
["935", "-3", "8", "64515", "24310"],
[
"935000000000000000",
"-3",
"8",
"64515000000000000000",
"24310000000000000000",
],
[
"1",
"-221",
"22059940471369027483332068679400581064239780177629666810348940098015901108344",
"98920366548084643601728869055592650835572950932266967461790948584315647051443",
"991",
],
];
for t in 0..gcd_test_cases.len() {
//d, x, y, a, b string
let d_case = BigInt::from_str(gcd_test_cases[t][0]).unwrap();
let x_case = BigInt::from_str(gcd_test_cases[t][1]).unwrap();
let y_case = BigInt::from_str(gcd_test_cases[t][2]).unwrap();
let a_case = BigInt::from_str(gcd_test_cases[t][3]).unwrap();
let b_case = BigInt::from_str(gcd_test_cases[t][4]).unwrap();
// println!("round is {:?}", t);
// println!("a len is {:?}", a_case.len());
// println!("b len is {:?}", b_case.len());
// println!("a is {:?}", &a_case);
// println!("b is {:?}", &b_case);
//testGcd(d, nil, nil, a, b)
//testGcd(d, x, y, a, b)
let (_d, _x, _y) = xgcd(&a_case, &b_case, false);
assert_eq!(_d, d_case);
assert_eq!(_x, None);
assert_eq!(_y, None);
let (_d, _x, _y) = xgcd(&a_case, &b_case, true);
assert_eq!(_d, d_case);
assert_eq!(_x.unwrap(), x_case);
assert_eq!(_y.unwrap(), y_case);
}
}
#[test]
#[cfg(feature = "rand")]
fn test_gcd_lehmer_euclid_extended() {
let mut rng = XorShiftRng::from_seed([1u8; 16]);
for i in 1usize..80 {
for j in &[1usize, 16, 24, 64, 128] {
//println!("round {} - {}", i, j);
let a = rng.gen_biguint(i * j);
let b = rng.gen_biguint(i * j);
let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), true);
let expected = extended_gcd_euclid(Cow::Borrowed(&a), Cow::Borrowed(&b));
assert_eq!(q, expected.0);
assert_eq!(s_k.unwrap(), expected.1);
assert_eq!(t_k.unwrap(), expected.2);
}
}
}
#[test]
#[cfg(feature = "rand")]
fn test_gcd_lehmer_euclid_not_extended() {
let mut rng = XorShiftRng::from_seed([1u8; 16]);
for i in 1usize..80 {
for j in &[1usize, 16, 24, 64, 128] {
//println!("round {} - {}", i, j);
let a = rng.gen_biguint(i * j);
let b = rng.gen_biguint(i * j);
let (q, s_k, t_k) = extended_gcd(Cow::Borrowed(&a), Cow::Borrowed(&b), false);
let expected = extended_gcd_euclid(Cow::Borrowed(&a), Cow::Borrowed(&b));
assert_eq!(
q, expected.0,
"gcd({}, {}) = {} != {}",
&a, &b, &q, expected.0
);
assert_eq!(s_k, None);
assert_eq!(t_k, None);
}
}
}
}