num_bigint_dig/algorithms/
div.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
use core::cmp::Ordering;
use num_traits::{One, Zero};
use smallvec::SmallVec;

use crate::algorithms::{add2, cmp_slice, sub2};
use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::BigUint;

pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
    let mut rem = 0;

    for d in a.data.iter_mut().rev() {
        let (q, r) = div_wide(rem, *d, b);
        *d = q;
        rem = r;
    }

    (a.normalized(), rem)
}

/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
pub fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
    debug_assert!(hi < divisor);

    let lhs = big_digit::to_doublebigdigit(hi, lo);
    let rhs = divisor as DoubleBigDigit;
    ((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}

pub fn div_rem(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
    if d.is_zero() {
        panic!()
    }
    if u.is_zero() {
        return (Zero::zero(), Zero::zero());
    }
    if d.data.len() == 1 {
        if d.data[0] == 1 {
            return (u.clone(), Zero::zero());
        }

        let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
        return (div, rem.into());
    }

    // Required or the q_len calculation below can underflow:
    match u.cmp(d) {
        Ordering::Less => return (Zero::zero(), u.clone()),
        Ordering::Equal => return (One::one(), Zero::zero()),
        Ordering::Greater => {} // Do nothing
    }

    // This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
    //
    // First, normalize the arguments so the highest bit in the highest digit of the divisor is
    // set: the main loop uses the highest digit of the divisor for generating guesses, so we
    // want it to be the largest number we can efficiently divide by.
    //
    let shift = d.data.last().unwrap().leading_zeros() as usize;
    let mut a = u << shift;
    let b = d << shift;

    // The algorithm works by incrementally calculating "guesses", q0, for part of the
    // remainder. Once we have any number q0 such that q0 * b <= a, we can set
    //
    //     q += q0
    //     a -= q0 * b
    //
    // and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
    //
    // q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
    // - this should give us a guess that is "close" to the actual quotient, but is possibly
    // greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
    // until we have a guess such that q0 * b <= a.
    //

    let bn = *b.data.last().unwrap();
    let q_len = a.data.len() - b.data.len() + 1;
    let mut q = BigUint {
        data: smallvec![0; q_len],
    };

    // We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
    // sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
    // can be bigger).
    //
    let mut tmp = BigUint {
        data: SmallVec::with_capacity(2),
    };

    for j in (0..q_len).rev() {
        /*
         * When calculating our next guess q0, we don't need to consider the digits below j
         * + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
         * digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
         * two numbers will be zero in all digits up to (j + b.data.len() - 1).
         */
        let offset = j + b.data.len() - 1;
        if offset >= a.data.len() {
            continue;
        }

        /* just avoiding a heap allocation: */
        let mut a0 = tmp;
        a0.data.truncate(0);
        a0.data.extend(a.data[offset..].iter().cloned());

        /*
         * q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
         * implicitly at the end, when adding and subtracting to a and q. Not only do we
         * save the cost of the shifts, the rest of the arithmetic gets to work with
         * smaller numbers.
         */
        let (mut q0, _) = div_rem_digit(a0, bn);
        let mut prod = &b * &q0;

        while cmp_slice(&prod.data[..], &a.data[j..]) == Ordering::Greater {
            let one: BigUint = One::one();
            q0 = q0 - one;
            prod = prod - &b;
        }

        add2(&mut q.data[j..], &q0.data[..]);
        sub2(&mut a.data[j..], &prod.data[..]);
        a.normalize();

        tmp = q0;
    }

    debug_assert!(a < b);

    (q.normalized(), a >> shift)
}