num_bigint_dig/algorithms/div.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
use core::cmp::Ordering;
use num_traits::{One, Zero};
use smallvec::SmallVec;
use crate::algorithms::{add2, cmp_slice, sub2};
use crate::big_digit::{self, BigDigit, DoubleBigDigit};
use crate::BigUint;
pub fn div_rem_digit(mut a: BigUint, b: BigDigit) -> (BigUint, BigDigit) {
let mut rem = 0;
for d in a.data.iter_mut().rev() {
let (q, r) = div_wide(rem, *d, b);
*d = q;
rem = r;
}
(a.normalized(), rem)
}
/// Divide a two digit numerator by a one digit divisor, returns quotient and remainder:
///
/// Note: the caller must ensure that both the quotient and remainder will fit into a single digit.
/// This is _not_ true for an arbitrary numerator/denominator.
///
/// (This function also matches what the x86 divide instruction does).
#[inline]
pub fn div_wide(hi: BigDigit, lo: BigDigit, divisor: BigDigit) -> (BigDigit, BigDigit) {
debug_assert!(hi < divisor);
let lhs = big_digit::to_doublebigdigit(hi, lo);
let rhs = divisor as DoubleBigDigit;
((lhs / rhs) as BigDigit, (lhs % rhs) as BigDigit)
}
pub fn div_rem(u: &BigUint, d: &BigUint) -> (BigUint, BigUint) {
if d.is_zero() {
panic!()
}
if u.is_zero() {
return (Zero::zero(), Zero::zero());
}
if d.data.len() == 1 {
if d.data[0] == 1 {
return (u.clone(), Zero::zero());
}
let (div, rem) = div_rem_digit(u.clone(), d.data[0]);
return (div, rem.into());
}
// Required or the q_len calculation below can underflow:
match u.cmp(d) {
Ordering::Less => return (Zero::zero(), u.clone()),
Ordering::Equal => return (One::one(), Zero::zero()),
Ordering::Greater => {} // Do nothing
}
// This algorithm is from Knuth, TAOCP vol 2 section 4.3, algorithm D:
//
// First, normalize the arguments so the highest bit in the highest digit of the divisor is
// set: the main loop uses the highest digit of the divisor for generating guesses, so we
// want it to be the largest number we can efficiently divide by.
//
let shift = d.data.last().unwrap().leading_zeros() as usize;
let mut a = u << shift;
let b = d << shift;
// The algorithm works by incrementally calculating "guesses", q0, for part of the
// remainder. Once we have any number q0 such that q0 * b <= a, we can set
//
// q += q0
// a -= q0 * b
//
// and then iterate until a < b. Then, (q, a) will be our desired quotient and remainder.
//
// q0, our guess, is calculated by dividing the last few digits of a by the last digit of b
// - this should give us a guess that is "close" to the actual quotient, but is possibly
// greater than the actual quotient. If q0 * b > a, we simply use iterated subtraction
// until we have a guess such that q0 * b <= a.
//
let bn = *b.data.last().unwrap();
let q_len = a.data.len() - b.data.len() + 1;
let mut q = BigUint {
data: smallvec![0; q_len],
};
// We reuse the same temporary to avoid hitting the allocator in our inner loop - this is
// sized to hold a0 (in the common case; if a particular digit of the quotient is zero a0
// can be bigger).
//
let mut tmp = BigUint {
data: SmallVec::with_capacity(2),
};
for j in (0..q_len).rev() {
/*
* When calculating our next guess q0, we don't need to consider the digits below j
* + b.data.len() - 1: we're guessing digit j of the quotient (i.e. q0 << j) from
* digit bn of the divisor (i.e. bn << (b.data.len() - 1) - so the product of those
* two numbers will be zero in all digits up to (j + b.data.len() - 1).
*/
let offset = j + b.data.len() - 1;
if offset >= a.data.len() {
continue;
}
/* just avoiding a heap allocation: */
let mut a0 = tmp;
a0.data.truncate(0);
a0.data.extend(a.data[offset..].iter().cloned());
/*
* q0 << j * big_digit::BITS is our actual quotient estimate - we do the shifts
* implicitly at the end, when adding and subtracting to a and q. Not only do we
* save the cost of the shifts, the rest of the arithmetic gets to work with
* smaller numbers.
*/
let (mut q0, _) = div_rem_digit(a0, bn);
let mut prod = &b * &q0;
while cmp_slice(&prod.data[..], &a.data[j..]) == Ordering::Greater {
let one: BigUint = One::one();
q0 = q0 - one;
prod = prod - &b;
}
add2(&mut q.data[j..], &q0.data[..]);
sub2(&mut a.data[j..], &prod.data[..]);
a.normalize();
tmp = q0;
}
debug_assert!(a < b);
(q.normalized(), a >> shift)
}