openvm_bigint_circuit/
shift.rs

1use std::{
2    borrow::{Borrow, BorrowMut},
3    mem::size_of,
4};
5
6use openvm_bigint_transpiler::Rv32Shift256Opcode;
7use openvm_circuit::{arch::*, system::memory::online::GuestMemory};
8use openvm_circuit_primitives_derive::AlignedBytesBorrow;
9use openvm_instructions::{
10    instruction::Instruction,
11    program::DEFAULT_PC_STEP,
12    riscv::{RV32_MEMORY_AS, RV32_REGISTER_AS},
13    LocalOpcode,
14};
15use openvm_rv32_adapters::Rv32HeapAdapterExecutor;
16use openvm_rv32im_circuit::ShiftExecutor;
17use openvm_rv32im_transpiler::ShiftOpcode;
18use openvm_stark_backend::p3_field::PrimeField32;
19
20use crate::{
21    common::{bytes_to_u64_array, u64_array_to_bytes},
22    Rv32Shift256Executor, INT256_NUM_LIMBS,
23};
24
25type AdapterExecutor = Rv32HeapAdapterExecutor<2, INT256_NUM_LIMBS, INT256_NUM_LIMBS>;
26
27impl Rv32Shift256Executor {
28    pub fn new(adapter: AdapterExecutor, offset: usize) -> Self {
29        Self(ShiftExecutor::new(adapter, offset))
30    }
31}
32
33#[derive(AlignedBytesBorrow, Clone)]
34#[repr(C)]
35struct ShiftPreCompute {
36    a: u8,
37    b: u8,
38    c: u8,
39}
40
41macro_rules! dispatch {
42    ($execute_impl:ident, $local_opcode:ident) => {
43        Ok(match $local_opcode {
44            ShiftOpcode::SLL => $execute_impl::<_, _, SllOp>,
45            ShiftOpcode::SRA => $execute_impl::<_, _, SraOp>,
46            ShiftOpcode::SRL => $execute_impl::<_, _, SrlOp>,
47        })
48    };
49}
50
51impl<F: PrimeField32> Executor<F> for Rv32Shift256Executor {
52    fn pre_compute_size(&self) -> usize {
53        size_of::<ShiftPreCompute>()
54    }
55
56    #[cfg(not(feature = "tco"))]
57    fn pre_compute<Ctx>(
58        &self,
59        pc: u32,
60        inst: &Instruction<F>,
61        data: &mut [u8],
62    ) -> Result<ExecuteFunc<F, Ctx>, StaticProgramError>
63    where
64        Ctx: ExecutionCtxTrait,
65    {
66        let data: &mut ShiftPreCompute = data.borrow_mut();
67        let local_opcode = self.pre_compute_impl(pc, inst, data)?;
68        dispatch!(execute_e1_handler, local_opcode)
69    }
70
71    #[cfg(feature = "tco")]
72    fn handler<Ctx>(
73        &self,
74        pc: u32,
75        inst: &Instruction<F>,
76        data: &mut [u8],
77    ) -> Result<Handler<F, Ctx>, StaticProgramError>
78    where
79        Ctx: ExecutionCtxTrait,
80    {
81        let data: &mut ShiftPreCompute = data.borrow_mut();
82        let local_opcode = self.pre_compute_impl(pc, inst, data)?;
83        dispatch!(execute_e1_handler, local_opcode)
84    }
85}
86
87impl<F: PrimeField32> MeteredExecutor<F> for Rv32Shift256Executor {
88    fn metered_pre_compute_size(&self) -> usize {
89        size_of::<E2PreCompute<ShiftPreCompute>>()
90    }
91
92    #[cfg(not(feature = "tco"))]
93    fn metered_pre_compute<Ctx>(
94        &self,
95        chip_idx: usize,
96        pc: u32,
97        inst: &Instruction<F>,
98        data: &mut [u8],
99    ) -> Result<ExecuteFunc<F, Ctx>, StaticProgramError>
100    where
101        Ctx: MeteredExecutionCtxTrait,
102    {
103        let data: &mut E2PreCompute<ShiftPreCompute> = data.borrow_mut();
104        data.chip_idx = chip_idx as u32;
105        let local_opcode = self.pre_compute_impl(pc, inst, &mut data.data)?;
106        dispatch!(execute_e2_handler, local_opcode)
107    }
108
109    #[cfg(feature = "tco")]
110    fn metered_handler<Ctx>(
111        &self,
112        chip_idx: usize,
113        pc: u32,
114        inst: &Instruction<F>,
115        data: &mut [u8],
116    ) -> Result<Handler<F, Ctx>, StaticProgramError>
117    where
118        Ctx: MeteredExecutionCtxTrait,
119    {
120        let data: &mut E2PreCompute<ShiftPreCompute> = data.borrow_mut();
121        data.chip_idx = chip_idx as u32;
122        let local_opcode = self.pre_compute_impl(pc, inst, &mut data.data)?;
123        dispatch!(execute_e2_handler, local_opcode)
124    }
125}
126
127#[inline(always)]
128unsafe fn execute_e12_impl<F: PrimeField32, CTX: ExecutionCtxTrait, OP: ShiftOp>(
129    pre_compute: &ShiftPreCompute,
130    instret: &mut u64,
131    pc: &mut u32,
132    exec_state: &mut VmExecState<F, GuestMemory, CTX>,
133) {
134    let rs1_ptr = exec_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.b as u32);
135    let rs2_ptr = exec_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.c as u32);
136    let rd_ptr = exec_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.a as u32);
137    let rs1 =
138        exec_state.vm_read::<u8, INT256_NUM_LIMBS>(RV32_MEMORY_AS, u32::from_le_bytes(rs1_ptr));
139    let rs2 =
140        exec_state.vm_read::<u8, INT256_NUM_LIMBS>(RV32_MEMORY_AS, u32::from_le_bytes(rs2_ptr));
141    let rd = OP::compute(rs1, rs2);
142    exec_state.vm_write(RV32_MEMORY_AS, u32::from_le_bytes(rd_ptr), &rd);
143    *pc = pc.wrapping_add(DEFAULT_PC_STEP);
144    *instret += 1;
145}
146
147#[create_handler]
148#[inline(always)]
149unsafe fn execute_e1_impl<F: PrimeField32, CTX: ExecutionCtxTrait, OP: ShiftOp>(
150    pre_compute: &[u8],
151    instret: &mut u64,
152    pc: &mut u32,
153    _instret_end: u64,
154    exec_state: &mut VmExecState<F, GuestMemory, CTX>,
155) {
156    let pre_compute: &ShiftPreCompute = pre_compute.borrow();
157    execute_e12_impl::<F, CTX, OP>(pre_compute, instret, pc, exec_state);
158}
159
160#[create_handler]
161#[inline(always)]
162unsafe fn execute_e2_impl<F: PrimeField32, CTX: MeteredExecutionCtxTrait, OP: ShiftOp>(
163    pre_compute: &[u8],
164    instret: &mut u64,
165    pc: &mut u32,
166    _arg: u64,
167    exec_state: &mut VmExecState<F, GuestMemory, CTX>,
168) {
169    let pre_compute: &E2PreCompute<ShiftPreCompute> = pre_compute.borrow();
170    exec_state
171        .ctx
172        .on_height_change(pre_compute.chip_idx as usize, 1);
173    execute_e12_impl::<F, CTX, OP>(&pre_compute.data, instret, pc, exec_state);
174}
175
176impl Rv32Shift256Executor {
177    fn pre_compute_impl<F: PrimeField32>(
178        &self,
179        pc: u32,
180        inst: &Instruction<F>,
181        data: &mut ShiftPreCompute,
182    ) -> Result<ShiftOpcode, StaticProgramError> {
183        let Instruction {
184            opcode,
185            a,
186            b,
187            c,
188            d,
189            e,
190            ..
191        } = inst;
192        let e_u32 = e.as_canonical_u32();
193        if d.as_canonical_u32() != RV32_REGISTER_AS || e_u32 != RV32_MEMORY_AS {
194            return Err(StaticProgramError::InvalidInstruction(pc));
195        }
196        *data = ShiftPreCompute {
197            a: a.as_canonical_u32() as u8,
198            b: b.as_canonical_u32() as u8,
199            c: c.as_canonical_u32() as u8,
200        };
201        let local_opcode =
202            ShiftOpcode::from_usize(opcode.local_opcode_idx(Rv32Shift256Opcode::CLASS_OFFSET));
203        Ok(local_opcode)
204    }
205}
206
207trait ShiftOp {
208    fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS];
209}
210struct SllOp;
211struct SrlOp;
212struct SraOp;
213impl ShiftOp for SllOp {
214    #[inline(always)]
215    fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
216        let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
217        let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
218        let mut rd = [0u64; 4];
219        // Only use the first 8 bits.
220        let shift = (rs2_u64[0] & 0xff) as u32;
221        let index_offset = (shift / u64::BITS) as usize;
222        let bit_offset = shift % u64::BITS;
223        let mut carry = 0u64;
224        for i in index_offset..4 {
225            let curr = rs1_u64[i - index_offset];
226            rd[i] = (curr << bit_offset) + carry;
227            if bit_offset > 0 {
228                carry = curr >> (u64::BITS - bit_offset);
229            }
230        }
231        u64_array_to_bytes(rd)
232    }
233}
234impl ShiftOp for SrlOp {
235    #[inline(always)]
236    fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
237        // Logical right shift - fill with 0
238        shift_right(rs1, rs2, 0)
239    }
240}
241impl ShiftOp for SraOp {
242    #[inline(always)]
243    fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
244        // Arithmetic right shift - fill with sign bit
245        if rs1[INT256_NUM_LIMBS - 1] & 0x80 > 0 {
246            shift_right(rs1, rs2, u64::MAX)
247        } else {
248            shift_right(rs1, rs2, 0)
249        }
250    }
251}
252
253#[inline(always)]
254fn shift_right(
255    rs1: [u8; INT256_NUM_LIMBS],
256    rs2: [u8; INT256_NUM_LIMBS],
257    init_value: u64,
258) -> [u8; INT256_NUM_LIMBS] {
259    let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
260    let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
261    let mut rd = [init_value; 4];
262    let shift = (rs2_u64[0] & 0xff) as u32;
263    let index_offset = (shift / u64::BITS) as usize;
264    let bit_offset = shift % u64::BITS;
265    let mut carry = if bit_offset > 0 {
266        init_value << (u64::BITS - bit_offset)
267    } else {
268        0
269    };
270    for i in (index_offset..4).rev() {
271        let curr = rs1_u64[i];
272        rd[i - index_offset] = (curr >> bit_offset) + carry;
273        if bit_offset > 0 {
274            carry = curr << (u64::BITS - bit_offset);
275        }
276    }
277    u64_array_to_bytes(rd)
278}
279
280#[cfg(test)]
281mod tests {
282    use alloy_primitives::U256;
283    use rand::{prelude::StdRng, Rng, SeedableRng};
284
285    use crate::{
286        shift::{ShiftOp, SllOp, SraOp, SrlOp},
287        INT256_NUM_LIMBS,
288    };
289
290    #[test]
291    fn test_shift_op() {
292        let mut rng = StdRng::from_seed([42; 32]);
293        for _ in 0..10000 {
294            let limbs_a: [u8; INT256_NUM_LIMBS] = rng.gen();
295            let mut limbs_b: [u8; INT256_NUM_LIMBS] = [0; INT256_NUM_LIMBS];
296            let shift: u8 = rng.gen();
297            limbs_b[0] = shift;
298            let a = U256::from_le_bytes(limbs_a);
299            {
300                let res = SllOp::compute(limbs_a, limbs_b);
301                assert_eq!(U256::from_le_bytes(res), a << shift);
302            }
303            {
304                let res = SraOp::compute(limbs_a, limbs_b);
305                assert_eq!(U256::from_le_bytes(res), a.arithmetic_shr(shift as usize));
306            }
307            {
308                let res = SrlOp::compute(limbs_a, limbs_b);
309                assert_eq!(U256::from_le_bytes(res), a >> shift);
310            }
311        }
312    }
313}