1use std::borrow::{Borrow, BorrowMut};
2
3use openvm_bigint_transpiler::Rv32BaseAlu256Opcode;
4use openvm_circuit::{arch::*, system::memory::online::GuestMemory};
5use openvm_circuit_primitives_derive::AlignedBytesBorrow;
6use openvm_instructions::{
7 instruction::Instruction,
8 program::DEFAULT_PC_STEP,
9 riscv::{RV32_MEMORY_AS, RV32_REGISTER_AS},
10 LocalOpcode,
11};
12use openvm_rv32_adapters::Rv32HeapAdapterExecutor;
13use openvm_rv32im_circuit::BaseAluExecutor;
14use openvm_rv32im_transpiler::BaseAluOpcode;
15use openvm_stark_backend::p3_field::PrimeField32;
16
17use crate::{
18 common::{bytes_to_u64_array, u64_array_to_bytes},
19 Rv32BaseAlu256Executor, INT256_NUM_LIMBS,
20};
21
22type AdapterExecutor = Rv32HeapAdapterExecutor<2, INT256_NUM_LIMBS, INT256_NUM_LIMBS>;
23
24impl Rv32BaseAlu256Executor {
25 pub fn new(adapter: AdapterExecutor, offset: usize) -> Self {
26 Self(BaseAluExecutor::new(adapter, offset))
27 }
28}
29
30#[derive(AlignedBytesBorrow)]
31struct BaseAluPreCompute {
32 a: u8,
33 b: u8,
34 c: u8,
35}
36
37macro_rules! dispatch {
38 ($execute_impl:ident, $local_opcode:ident) => {
39 Ok(match $local_opcode {
40 BaseAluOpcode::ADD => $execute_impl::<_, _, AddOp>,
41 BaseAluOpcode::SUB => $execute_impl::<_, _, SubOp>,
42 BaseAluOpcode::XOR => $execute_impl::<_, _, XorOp>,
43 BaseAluOpcode::OR => $execute_impl::<_, _, OrOp>,
44 BaseAluOpcode::AND => $execute_impl::<_, _, AndOp>,
45 })
46 };
47}
48
49impl<F: PrimeField32> Executor<F> for Rv32BaseAlu256Executor {
50 fn pre_compute_size(&self) -> usize {
51 size_of::<BaseAluPreCompute>()
52 }
53
54 fn pre_compute<Ctx>(
55 &self,
56 pc: u32,
57 inst: &Instruction<F>,
58 data: &mut [u8],
59 ) -> Result<ExecuteFunc<F, Ctx>, StaticProgramError>
60 where
61 Ctx: ExecutionCtxTrait,
62 {
63 let data: &mut BaseAluPreCompute = data.borrow_mut();
64 let local_opcode = self.pre_compute_impl(pc, inst, data)?;
65
66 dispatch!(execute_e1_impl, local_opcode)
67 }
68
69 #[cfg(feature = "tco")]
70 fn handler<Ctx>(
71 &self,
72 pc: u32,
73 inst: &Instruction<F>,
74 data: &mut [u8],
75 ) -> Result<Handler<F, Ctx>, StaticProgramError>
76 where
77 Ctx: ExecutionCtxTrait,
78 {
79 let data: &mut BaseAluPreCompute = data.borrow_mut();
80 let local_opcode = self.pre_compute_impl(pc, inst, data)?;
81
82 dispatch!(execute_e1_tco_handler, local_opcode)
83 }
84}
85
86impl<F: PrimeField32> MeteredExecutor<F> for Rv32BaseAlu256Executor {
87 fn metered_pre_compute_size(&self) -> usize {
88 size_of::<E2PreCompute<BaseAluPreCompute>>()
89 }
90
91 fn metered_pre_compute<Ctx>(
92 &self,
93 chip_idx: usize,
94 pc: u32,
95 inst: &Instruction<F>,
96 data: &mut [u8],
97 ) -> Result<ExecuteFunc<F, Ctx>, StaticProgramError>
98 where
99 Ctx: MeteredExecutionCtxTrait,
100 {
101 let data: &mut E2PreCompute<BaseAluPreCompute> = data.borrow_mut();
102 data.chip_idx = chip_idx as u32;
103 let local_opcode = self.pre_compute_impl(pc, inst, &mut data.data)?;
104
105 dispatch!(execute_e2_impl, local_opcode)
106 }
107
108 #[cfg(feature = "tco")]
109 fn metered_handler<Ctx>(
110 &self,
111 chip_idx: usize,
112 pc: u32,
113 inst: &Instruction<F>,
114 data: &mut [u8],
115 ) -> Result<Handler<F, Ctx>, StaticProgramError>
116 where
117 Ctx: MeteredExecutionCtxTrait,
118 {
119 let data: &mut E2PreCompute<BaseAluPreCompute> = data.borrow_mut();
120 data.chip_idx = chip_idx as u32;
121 let local_opcode = self.pre_compute_impl(pc, inst, &mut data.data)?;
122
123 dispatch!(execute_e2_tco_handler, local_opcode)
124 }
125}
126
127#[inline(always)]
128unsafe fn execute_e12_impl<F: PrimeField32, CTX: ExecutionCtxTrait, OP: AluOp>(
129 pre_compute: &BaseAluPreCompute,
130 vm_state: &mut VmExecState<F, GuestMemory, CTX>,
131) {
132 let rs1_ptr = vm_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.b as u32);
133 let rs2_ptr = vm_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.c as u32);
134 let rd_ptr = vm_state.vm_read::<u8, 4>(RV32_REGISTER_AS, pre_compute.a as u32);
135 let rs1 = vm_state.vm_read::<u8, INT256_NUM_LIMBS>(RV32_MEMORY_AS, u32::from_le_bytes(rs1_ptr));
136 let rs2 = vm_state.vm_read::<u8, INT256_NUM_LIMBS>(RV32_MEMORY_AS, u32::from_le_bytes(rs2_ptr));
137 let rd = <OP as AluOp>::compute(rs1, rs2);
138 vm_state.vm_write(RV32_MEMORY_AS, u32::from_le_bytes(rd_ptr), &rd);
139 vm_state.pc = vm_state.pc.wrapping_add(DEFAULT_PC_STEP);
140 vm_state.instret += 1;
141}
142
143#[create_tco_handler]
144unsafe fn execute_e1_impl<F: PrimeField32, CTX: ExecutionCtxTrait, OP: AluOp>(
145 pre_compute: &[u8],
146 vm_state: &mut VmExecState<F, GuestMemory, CTX>,
147) {
148 let pre_compute: &BaseAluPreCompute = pre_compute.borrow();
149 execute_e12_impl::<F, CTX, OP>(pre_compute, vm_state);
150}
151
152#[create_tco_handler]
153unsafe fn execute_e2_impl<F: PrimeField32, CTX: MeteredExecutionCtxTrait, OP: AluOp>(
154 pre_compute: &[u8],
155 vm_state: &mut VmExecState<F, GuestMemory, CTX>,
156) {
157 let pre_compute: &E2PreCompute<BaseAluPreCompute> = pre_compute.borrow();
158 vm_state
159 .ctx
160 .on_height_change(pre_compute.chip_idx as usize, 1);
161 execute_e12_impl::<F, CTX, OP>(&pre_compute.data, vm_state);
162}
163
164impl Rv32BaseAlu256Executor {
165 fn pre_compute_impl<F: PrimeField32>(
166 &self,
167 pc: u32,
168 inst: &Instruction<F>,
169 data: &mut BaseAluPreCompute,
170 ) -> Result<BaseAluOpcode, StaticProgramError> {
171 let Instruction {
172 opcode,
173 a,
174 b,
175 c,
176 d,
177 e,
178 ..
179 } = inst;
180 let e_u32 = e.as_canonical_u32();
181 if d.as_canonical_u32() != RV32_REGISTER_AS || e_u32 != RV32_MEMORY_AS {
182 return Err(StaticProgramError::InvalidInstruction(pc));
183 }
184 *data = BaseAluPreCompute {
185 a: a.as_canonical_u32() as u8,
186 b: b.as_canonical_u32() as u8,
187 c: c.as_canonical_u32() as u8,
188 };
189 let local_opcode =
190 BaseAluOpcode::from_usize(opcode.local_opcode_idx(Rv32BaseAlu256Opcode::CLASS_OFFSET));
191 Ok(local_opcode)
192 }
193}
194
195trait AluOp {
196 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS];
197}
198struct AddOp;
199struct SubOp;
200struct XorOp;
201struct OrOp;
202struct AndOp;
203impl AluOp for AddOp {
204 #[inline(always)]
205 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
206 let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
207 let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
208 let mut rd_u64 = [0u64; 4];
209 let (res, mut carry) = rs1_u64[0].overflowing_add(rs2_u64[0]);
210 rd_u64[0] = res;
211 for i in 1..4 {
212 let (res1, c1) = rs1_u64[i].overflowing_add(rs2_u64[i]);
213 let (res2, c2) = res1.overflowing_add(carry as u64);
214 carry = c1 || c2;
215 rd_u64[i] = res2;
216 }
217 u64_array_to_bytes(rd_u64)
218 }
219}
220impl AluOp for SubOp {
221 #[inline(always)]
222 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
223 let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
224 let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
225 let mut rd_u64 = [0u64; 4];
226 let (res, mut borrow) = rs1_u64[0].overflowing_sub(rs2_u64[0]);
227 rd_u64[0] = res;
228 for i in 1..4 {
229 let (res1, c1) = rs1_u64[i].overflowing_sub(rs2_u64[i]);
230 let (res2, c2) = res1.overflowing_sub(borrow as u64);
231 borrow = c1 || c2;
232 rd_u64[i] = res2;
233 }
234 u64_array_to_bytes(rd_u64)
235 }
236}
237impl AluOp for XorOp {
238 #[inline(always)]
239 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
240 let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
241 let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
242 let mut rd_u64 = [0u64; 4];
243 for i in 0..4 {
245 rd_u64[i] = rs1_u64[i] ^ rs2_u64[i];
246 }
247 u64_array_to_bytes(rd_u64)
248 }
249}
250impl AluOp for OrOp {
251 #[inline(always)]
252 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
253 let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
254 let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
255 let mut rd_u64 = [0u64; 4];
256 for i in 0..4 {
258 rd_u64[i] = rs1_u64[i] | rs2_u64[i];
259 }
260 u64_array_to_bytes(rd_u64)
261 }
262}
263impl AluOp for AndOp {
264 #[inline(always)]
265 fn compute(rs1: [u8; INT256_NUM_LIMBS], rs2: [u8; INT256_NUM_LIMBS]) -> [u8; INT256_NUM_LIMBS] {
266 let rs1_u64: [u64; 4] = bytes_to_u64_array(rs1);
267 let rs2_u64: [u64; 4] = bytes_to_u64_array(rs2);
268 let mut rd_u64 = [0u64; 4];
269 for i in 0..4 {
271 rd_u64[i] = rs1_u64[i] & rs2_u64[i];
272 }
273 u64_array_to_bytes(rd_u64)
274 }
275}