bumpalo/boxed.rs
1//! A pointer type for bump allocation.
2//!
3//! [`Box<'a, T>`] provides the simplest form of
4//! bump allocation in `bumpalo`. Boxes provide ownership for this allocation, and
5//! drop their contents when they go out of scope.
6//!
7//! # Examples
8//!
9//! Move a value from the stack to the heap by creating a [`Box`]:
10//!
11//! ```
12//! use bumpalo::{Bump, boxed::Box};
13//!
14//! let b = Bump::new();
15//!
16//! let val: u8 = 5;
17//! let boxed: Box<u8> = Box::new_in(val, &b);
18//! ```
19//!
20//! Move a value from a [`Box`] back to the stack by [dereferencing]:
21//!
22//! ```
23//! use bumpalo::{Bump, boxed::Box};
24//!
25//! let b = Bump::new();
26//!
27//! let boxed: Box<u8> = Box::new_in(5, &b);
28//! let val: u8 = *boxed;
29//! ```
30//!
31//! Running [`Drop`] implementations on bump-allocated values:
32//!
33//! ```
34//! use bumpalo::{Bump, boxed::Box};
35//! use std::sync::atomic::{AtomicUsize, Ordering};
36//!
37//! static NUM_DROPPED: AtomicUsize = AtomicUsize::new(0);
38//!
39//! struct CountDrops;
40//!
41//! impl Drop for CountDrops {
42//! fn drop(&mut self) {
43//! NUM_DROPPED.fetch_add(1, Ordering::SeqCst);
44//! }
45//! }
46//!
47//! // Create a new bump arena.
48//! let bump = Bump::new();
49//!
50//! // Create a `CountDrops` inside the bump arena.
51//! let mut c = Box::new_in(CountDrops, &bump);
52//!
53//! // No `CountDrops` have been dropped yet.
54//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 0);
55//!
56//! // Drop our `Box<CountDrops>`.
57//! drop(c);
58//!
59//! // Its `Drop` implementation was run, and so `NUM_DROPS` has been incremented.
60//! assert_eq!(NUM_DROPPED.load(Ordering::SeqCst), 1);
61//! ```
62//!
63//! Creating a recursive data structure:
64//!
65//! ```
66//! use bumpalo::{Bump, boxed::Box};
67//!
68//! let b = Bump::new();
69//!
70//! #[derive(Debug)]
71//! enum List<'a, T> {
72//! Cons(T, Box<'a, List<'a, T>>),
73//! Nil,
74//! }
75//!
76//! let list: List<i32> = List::Cons(1, Box::new_in(List::Cons(2, Box::new_in(List::Nil, &b)), &b));
77//! println!("{:?}", list);
78//! ```
79//!
80//! This will print `Cons(1, Cons(2, Nil))`.
81//!
82//! Recursive structures must be boxed, because if the definition of `Cons`
83//! looked like this:
84//!
85//! ```compile_fail,E0072
86//! # enum List<T> {
87//! Cons(T, List<T>),
88//! # }
89//! ```
90//!
91//! It wouldn't work. This is because the size of a `List` depends on how many
92//! elements are in the list, and so we don't know how much memory to allocate
93//! for a `Cons`. By introducing a [`Box<'a, T>`], which has a defined size, we know how
94//! big `Cons` needs to be.
95//!
96//! # Memory layout
97//!
98//! For non-zero-sized values, a [`Box`] will use the provided [`Bump`] allocator for
99//! its allocation. It is valid to convert both ways between a [`Box`] and a
100//! pointer allocated with the [`Bump`] allocator, given that the
101//! [`Layout`] used with the allocator is correct for the type. More precisely,
102//! a `value: *mut T` that has been allocated with the [`Bump`] allocator
103//! with `Layout::for_value(&*value)` may be converted into a box using
104//! [`Box::<T>::from_raw(value)`]. Conversely, the memory backing a `value: *mut
105//! T` obtained from [`Box::<T>::into_raw`] will be deallocated by the
106//! [`Bump`] allocator with [`Layout::for_value(&*value)`].
107//!
108//! Note that roundtrip `Box::from_raw(Box::into_raw(b))` looses the lifetime bound to the
109//! [`Bump`] immutable borrow which guarantees that the allocator will not be reset
110//! and memory will not be freed.
111//!
112//! [dereferencing]: https://doc.rust-lang.org/std/ops/trait.Deref.html
113//! [`Box`]: struct.Box.html
114//! [`Box<'a, T>`]: struct.Box.html
115//! [`Box::<T>::from_raw(value)`]: struct.Box.html#method.from_raw
116//! [`Box::<T>::into_raw`]: struct.Box.html#method.into_raw
117//! [`Bump`]: ../struct.Bump.html
118//! [`Drop`]: https://doc.rust-lang.org/std/ops/trait.Drop.html
119//! [`Layout`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html
120//! [`Layout::for_value(&*value)`]: https://doc.rust-lang.org/std/alloc/struct.Layout.html#method.for_value
121
122use {
123 crate::Bump,
124 {
125 core::{
126 any::Any,
127 borrow,
128 cmp::Ordering,
129 convert::TryFrom,
130 future::Future,
131 hash::{Hash, Hasher},
132 iter::FusedIterator,
133 mem::ManuallyDrop,
134 ops::{Deref, DerefMut},
135 pin::Pin,
136 task::{Context, Poll},
137 },
138 core_alloc::fmt,
139 },
140};
141
142/// An owned pointer to a bump-allocated `T` value, that runs `Drop`
143/// implementations.
144///
145/// See the [module-level documentation][crate::boxed] for more details.
146#[repr(transparent)]
147pub struct Box<'a, T: ?Sized>(&'a mut T);
148
149impl<'a, T> Box<'a, T> {
150 /// Allocates memory on the heap and then places `x` into it.
151 ///
152 /// This doesn't actually allocate if `T` is zero-sized.
153 ///
154 /// # Examples
155 ///
156 /// ```
157 /// use bumpalo::{Bump, boxed::Box};
158 ///
159 /// let b = Bump::new();
160 ///
161 /// let five = Box::new_in(5, &b);
162 /// ```
163 #[inline(always)]
164 pub fn new_in(x: T, a: &'a Bump) -> Box<'a, T> {
165 Box(a.alloc(x))
166 }
167
168 /// Constructs a new `Pin<Box<T>>`. If `T` does not implement `Unpin`, then
169 /// `x` will be pinned in memory and unable to be moved.
170 #[inline(always)]
171 pub fn pin_in(x: T, a: &'a Bump) -> Pin<Box<'a, T>> {
172 Box(a.alloc(x)).into()
173 }
174
175 /// Consumes the `Box`, returning the wrapped value.
176 ///
177 /// # Examples
178 ///
179 /// ```
180 /// use bumpalo::{Bump, boxed::Box};
181 ///
182 /// let b = Bump::new();
183 ///
184 /// let hello = Box::new_in("hello".to_owned(), &b);
185 /// assert_eq!(Box::into_inner(hello), "hello");
186 /// ```
187 pub fn into_inner(b: Box<'a, T>) -> T {
188 // `Box::into_raw` returns a pointer that is properly aligned and non-null.
189 // The underlying `Bump` only frees the memory, but won't call the destructor.
190 unsafe { core::ptr::read(Box::into_raw(b)) }
191 }
192}
193
194impl<'a, T: ?Sized> Box<'a, T> {
195 /// Constructs a box from a raw pointer.
196 ///
197 /// After calling this function, the raw pointer is owned by the
198 /// resulting `Box`. Specifically, the `Box` destructor will call
199 /// the destructor of `T` and free the allocated memory. For this
200 /// to be safe, the memory must have been allocated in accordance
201 /// with the memory layout used by `Box` .
202 ///
203 /// # Safety
204 ///
205 /// This function is unsafe because improper use may lead to
206 /// memory problems. For example, a double-free may occur if the
207 /// function is called twice on the same raw pointer.
208 ///
209 /// # Examples
210 ///
211 /// Recreate a `Box` which was previously converted to a raw pointer
212 /// using [`Box::into_raw`]:
213 /// ```
214 /// use bumpalo::{Bump, boxed::Box};
215 ///
216 /// let b = Bump::new();
217 ///
218 /// let x = Box::new_in(5, &b);
219 /// let ptr = Box::into_raw(x);
220 /// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
221 /// ```
222 /// Manually create a `Box` from scratch by using the bump allocator:
223 /// ```
224 /// use std::alloc::{alloc, Layout};
225 /// use bumpalo::{Bump, boxed::Box};
226 ///
227 /// let b = Bump::new();
228 ///
229 /// unsafe {
230 /// let ptr = b.alloc_layout(Layout::new::<i32>()).as_ptr() as *mut i32;
231 /// *ptr = 5;
232 /// let x = Box::from_raw(ptr); // Note that `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
233 /// }
234 /// ```
235 #[inline]
236 pub unsafe fn from_raw(raw: *mut T) -> Self {
237 Box(&mut *raw)
238 }
239
240 /// Consumes the `Box`, returning a wrapped raw pointer.
241 ///
242 /// The pointer will be properly aligned and non-null.
243 ///
244 /// After calling this function, the caller is responsible for the
245 /// value previously managed by the `Box`. In particular, the
246 /// caller should properly destroy `T`. The easiest way to
247 /// do this is to convert the raw pointer back into a `Box` with the
248 /// [`Box::from_raw`] function, allowing the `Box` destructor to perform
249 /// the cleanup.
250 ///
251 /// Note: this is an associated function, which means that you have
252 /// to call it as `Box::into_raw(b)` instead of `b.into_raw()`. This
253 /// is so that there is no conflict with a method on the inner type.
254 ///
255 /// # Examples
256 ///
257 /// Converting the raw pointer back into a `Box` with [`Box::from_raw`]
258 /// for automatic cleanup:
259 /// ```
260 /// use bumpalo::{Bump, boxed::Box};
261 ///
262 /// let b = Bump::new();
263 ///
264 /// let x = Box::new_in(String::from("Hello"), &b);
265 /// let ptr = Box::into_raw(x);
266 /// let x = unsafe { Box::from_raw(ptr) }; // Note that new `x`'s lifetime is unbound. It must be bound to the `b` immutable borrow before `b` is reset.
267 /// ```
268 /// Manual cleanup by explicitly running the destructor:
269 /// ```
270 /// use std::ptr;
271 /// use bumpalo::{Bump, boxed::Box};
272 ///
273 /// let b = Bump::new();
274 ///
275 /// let mut x = Box::new_in(String::from("Hello"), &b);
276 /// let p = Box::into_raw(x);
277 /// unsafe {
278 /// ptr::drop_in_place(p);
279 /// }
280 /// ```
281 #[inline]
282 pub fn into_raw(b: Box<'a, T>) -> *mut T {
283 let mut b = ManuallyDrop::new(b);
284 b.deref_mut().0 as *mut T
285 }
286
287 /// Consumes and leaks the `Box`, returning a mutable reference,
288 /// `&'a mut T`. Note that the type `T` must outlive the chosen lifetime
289 /// `'a`. If the type has only static references, or none at all, then this
290 /// may be chosen to be `'static`.
291 ///
292 /// This function is mainly useful for data that lives for the remainder of
293 /// the program's life. Dropping the returned reference will cause a memory
294 /// leak. If this is not acceptable, the reference should first be wrapped
295 /// with the [`Box::from_raw`] function producing a `Box`. This `Box` can
296 /// then be dropped which will properly destroy `T` and release the
297 /// allocated memory.
298 ///
299 /// Note: this is an associated function, which means that you have
300 /// to call it as `Box::leak(b)` instead of `b.leak()`. This
301 /// is so that there is no conflict with a method on the inner type.
302 ///
303 /// # Examples
304 ///
305 /// Simple usage:
306 ///
307 /// ```
308 /// use bumpalo::{Bump, boxed::Box};
309 ///
310 /// let b = Bump::new();
311 ///
312 /// let x = Box::new_in(41, &b);
313 /// let reference: &mut usize = Box::leak(x);
314 /// *reference += 1;
315 /// assert_eq!(*reference, 42);
316 /// ```
317 ///
318 ///```
319 /// # #[cfg(feature = "collections")]
320 /// # {
321 /// use bumpalo::{Bump, boxed::Box, vec};
322 ///
323 /// let b = Bump::new();
324 ///
325 /// let x = vec![in &b; 1, 2, 3].into_boxed_slice();
326 /// let reference = Box::leak(x);
327 /// reference[0] = 4;
328 /// assert_eq!(*reference, [4, 2, 3]);
329 /// # }
330 ///```
331 #[inline]
332 pub fn leak(b: Box<'a, T>) -> &'a mut T {
333 unsafe { &mut *Box::into_raw(b) }
334 }
335}
336
337impl<'a, T: ?Sized> Drop for Box<'a, T> {
338 fn drop(&mut self) {
339 unsafe {
340 // `Box` owns value of `T`, but not memory behind it.
341 core::ptr::drop_in_place(self.0);
342 }
343 }
344}
345
346impl<'a, T> Default for Box<'a, [T]> {
347 fn default() -> Box<'a, [T]> {
348 // It should be OK to `drop_in_place` empty slice of anything.
349 Box(&mut [])
350 }
351}
352
353impl<'a> Default for Box<'a, str> {
354 fn default() -> Box<'a, str> {
355 // Empty slice is valid string.
356 // It should be OK to `drop_in_place` empty str.
357 unsafe { Box::from_raw(Box::into_raw(Box::<[u8]>::default()) as *mut str) }
358 }
359}
360
361impl<'a, 'b, T: ?Sized + PartialEq> PartialEq<Box<'b, T>> for Box<'a, T> {
362 #[inline]
363 fn eq(&self, other: &Box<'b, T>) -> bool {
364 PartialEq::eq(&**self, &**other)
365 }
366 #[inline]
367 fn ne(&self, other: &Box<'b, T>) -> bool {
368 PartialEq::ne(&**self, &**other)
369 }
370}
371
372impl<'a, 'b, T: ?Sized + PartialOrd> PartialOrd<Box<'b, T>> for Box<'a, T> {
373 #[inline]
374 fn partial_cmp(&self, other: &Box<'b, T>) -> Option<Ordering> {
375 PartialOrd::partial_cmp(&**self, &**other)
376 }
377 #[inline]
378 fn lt(&self, other: &Box<'b, T>) -> bool {
379 PartialOrd::lt(&**self, &**other)
380 }
381 #[inline]
382 fn le(&self, other: &Box<'b, T>) -> bool {
383 PartialOrd::le(&**self, &**other)
384 }
385 #[inline]
386 fn ge(&self, other: &Box<'b, T>) -> bool {
387 PartialOrd::ge(&**self, &**other)
388 }
389 #[inline]
390 fn gt(&self, other: &Box<'b, T>) -> bool {
391 PartialOrd::gt(&**self, &**other)
392 }
393}
394
395impl<'a, T: ?Sized + Ord> Ord for Box<'a, T> {
396 #[inline]
397 fn cmp(&self, other: &Box<'a, T>) -> Ordering {
398 Ord::cmp(&**self, &**other)
399 }
400}
401
402impl<'a, T: ?Sized + Eq> Eq for Box<'a, T> {}
403
404impl<'a, T: ?Sized + Hash> Hash for Box<'a, T> {
405 fn hash<H: Hasher>(&self, state: &mut H) {
406 (**self).hash(state);
407 }
408}
409
410impl<'a, T: ?Sized + Hasher> Hasher for Box<'a, T> {
411 fn finish(&self) -> u64 {
412 (**self).finish()
413 }
414 fn write(&mut self, bytes: &[u8]) {
415 (**self).write(bytes)
416 }
417 fn write_u8(&mut self, i: u8) {
418 (**self).write_u8(i)
419 }
420 fn write_u16(&mut self, i: u16) {
421 (**self).write_u16(i)
422 }
423 fn write_u32(&mut self, i: u32) {
424 (**self).write_u32(i)
425 }
426 fn write_u64(&mut self, i: u64) {
427 (**self).write_u64(i)
428 }
429 fn write_u128(&mut self, i: u128) {
430 (**self).write_u128(i)
431 }
432 fn write_usize(&mut self, i: usize) {
433 (**self).write_usize(i)
434 }
435 fn write_i8(&mut self, i: i8) {
436 (**self).write_i8(i)
437 }
438 fn write_i16(&mut self, i: i16) {
439 (**self).write_i16(i)
440 }
441 fn write_i32(&mut self, i: i32) {
442 (**self).write_i32(i)
443 }
444 fn write_i64(&mut self, i: i64) {
445 (**self).write_i64(i)
446 }
447 fn write_i128(&mut self, i: i128) {
448 (**self).write_i128(i)
449 }
450 fn write_isize(&mut self, i: isize) {
451 (**self).write_isize(i)
452 }
453}
454
455impl<'a, T: ?Sized> From<Box<'a, T>> for Pin<Box<'a, T>> {
456 /// Converts a `Box<T>` into a `Pin<Box<T>>`.
457 ///
458 /// This conversion does not allocate on the heap and happens in place.
459 fn from(boxed: Box<'a, T>) -> Self {
460 // It's not possible to move or replace the insides of a `Pin<Box<T>>`
461 // when `T: !Unpin`, so it's safe to pin it directly without any
462 // additional requirements.
463 unsafe { Pin::new_unchecked(boxed) }
464 }
465}
466
467impl<'a> Box<'a, dyn Any> {
468 #[inline]
469 /// Attempt to downcast the box to a concrete type.
470 ///
471 /// # Examples
472 ///
473 /// ```
474 /// use std::any::Any;
475 ///
476 /// fn print_if_string(value: Box<dyn Any>) {
477 /// if let Ok(string) = value.downcast::<String>() {
478 /// println!("String ({}): {}", string.len(), string);
479 /// }
480 /// }
481 ///
482 /// let my_string = "Hello World".to_string();
483 /// print_if_string(Box::new(my_string));
484 /// print_if_string(Box::new(0i8));
485 /// ```
486 pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any>> {
487 if self.is::<T>() {
488 unsafe {
489 let raw: *mut dyn Any = Box::into_raw(self);
490 Ok(Box::from_raw(raw as *mut T))
491 }
492 } else {
493 Err(self)
494 }
495 }
496}
497
498impl<'a> Box<'a, dyn Any + Send> {
499 #[inline]
500 /// Attempt to downcast the box to a concrete type.
501 ///
502 /// # Examples
503 ///
504 /// ```
505 /// use std::any::Any;
506 ///
507 /// fn print_if_string(value: Box<dyn Any + Send>) {
508 /// if let Ok(string) = value.downcast::<String>() {
509 /// println!("String ({}): {}", string.len(), string);
510 /// }
511 /// }
512 ///
513 /// let my_string = "Hello World".to_string();
514 /// print_if_string(Box::new(my_string));
515 /// print_if_string(Box::new(0i8));
516 /// ```
517 pub fn downcast<T: Any>(self) -> Result<Box<'a, T>, Box<'a, dyn Any + Send>> {
518 if self.is::<T>() {
519 unsafe {
520 let raw: *mut (dyn Any + Send) = Box::into_raw(self);
521 Ok(Box::from_raw(raw as *mut T))
522 }
523 } else {
524 Err(self)
525 }
526 }
527}
528
529impl<'a, T: fmt::Display + ?Sized> fmt::Display for Box<'a, T> {
530 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
531 fmt::Display::fmt(&**self, f)
532 }
533}
534
535impl<'a, T: fmt::Debug + ?Sized> fmt::Debug for Box<'a, T> {
536 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
537 fmt::Debug::fmt(&**self, f)
538 }
539}
540
541impl<'a, T: ?Sized> fmt::Pointer for Box<'a, T> {
542 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
543 // It's not possible to extract the inner Uniq directly from the Box,
544 // instead we cast it to a *const which aliases the Unique
545 let ptr: *const T = &**self;
546 fmt::Pointer::fmt(&ptr, f)
547 }
548}
549
550impl<'a, T: ?Sized> Deref for Box<'a, T> {
551 type Target = T;
552
553 fn deref(&self) -> &T {
554 &*self.0
555 }
556}
557
558impl<'a, T: ?Sized> DerefMut for Box<'a, T> {
559 fn deref_mut(&mut self) -> &mut T {
560 self.0
561 }
562}
563
564impl<'a, I: Iterator + ?Sized> Iterator for Box<'a, I> {
565 type Item = I::Item;
566 fn next(&mut self) -> Option<I::Item> {
567 (**self).next()
568 }
569 fn size_hint(&self) -> (usize, Option<usize>) {
570 (**self).size_hint()
571 }
572 fn nth(&mut self, n: usize) -> Option<I::Item> {
573 (**self).nth(n)
574 }
575 fn last(self) -> Option<I::Item> {
576 #[inline]
577 fn some<T>(_: Option<T>, x: T) -> Option<T> {
578 Some(x)
579 }
580 self.fold(None, some)
581 }
582}
583
584impl<'a, I: DoubleEndedIterator + ?Sized> DoubleEndedIterator for Box<'a, I> {
585 fn next_back(&mut self) -> Option<I::Item> {
586 (**self).next_back()
587 }
588 fn nth_back(&mut self, n: usize) -> Option<I::Item> {
589 (**self).nth_back(n)
590 }
591}
592impl<'a, I: ExactSizeIterator + ?Sized> ExactSizeIterator for Box<'a, I> {
593 fn len(&self) -> usize {
594 (**self).len()
595 }
596}
597
598impl<'a, I: FusedIterator + ?Sized> FusedIterator for Box<'a, I> {}
599
600#[cfg(feature = "collections")]
601impl<'a, A> Box<'a, [A]> {
602 /// Creates a value from an iterator.
603 /// This method is an adapted version of [`FromIterator::from_iter`][from_iter].
604 /// It cannot be made as that trait implementation given different signature.
605 ///
606 /// [from_iter]: https://doc.rust-lang.org/std/iter/trait.FromIterator.html#tymethod.from_iter
607 ///
608 /// # Examples
609 ///
610 /// Basic usage:
611 /// ```
612 /// use bumpalo::{Bump, boxed::Box, vec};
613 ///
614 /// let b = Bump::new();
615 ///
616 /// let five_fives = std::iter::repeat(5).take(5);
617 /// let slice = Box::from_iter_in(five_fives, &b);
618 /// assert_eq!(vec![in &b; 5, 5, 5, 5, 5], &*slice);
619 /// ```
620 pub fn from_iter_in<T: IntoIterator<Item = A>>(iter: T, a: &'a Bump) -> Self {
621 use crate::collections::Vec;
622 let mut vec = Vec::new_in(a);
623 vec.extend(iter);
624 vec.into_boxed_slice()
625 }
626}
627
628impl<'a, T: ?Sized> borrow::Borrow<T> for Box<'a, T> {
629 fn borrow(&self) -> &T {
630 &**self
631 }
632}
633
634impl<'a, T: ?Sized> borrow::BorrowMut<T> for Box<'a, T> {
635 fn borrow_mut(&mut self) -> &mut T {
636 &mut **self
637 }
638}
639
640impl<'a, T: ?Sized> AsRef<T> for Box<'a, T> {
641 fn as_ref(&self) -> &T {
642 &**self
643 }
644}
645
646impl<'a, T: ?Sized> AsMut<T> for Box<'a, T> {
647 fn as_mut(&mut self) -> &mut T {
648 &mut **self
649 }
650}
651
652impl<'a, T: ?Sized> Unpin for Box<'a, T> {}
653
654impl<'a, F: ?Sized + Future + Unpin> Future for Box<'a, F> {
655 type Output = F::Output;
656
657 fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
658 F::poll(Pin::new(&mut *self), cx)
659 }
660}
661
662/// This impl replaces unsize coercion.
663impl<'a, T, const N: usize> From<Box<'a, [T; N]>> for Box<'a, [T]> {
664 fn from(arr: Box<'a, [T; N]>) -> Box<'a, [T]> {
665 let mut arr = ManuallyDrop::new(arr);
666 let ptr = core::ptr::slice_from_raw_parts_mut(arr.as_mut_ptr(), N);
667 unsafe { Box::from_raw(ptr) }
668 }
669}
670
671/// This impl replaces unsize coercion.
672impl<'a, T, const N: usize> TryFrom<Box<'a, [T]>> for Box<'a, [T; N]> {
673 type Error = Box<'a, [T]>;
674 fn try_from(slice: Box<'a, [T]>) -> Result<Box<'a, [T; N]>, Box<'a, [T]>> {
675 if slice.len() == N {
676 let mut slice = ManuallyDrop::new(slice);
677 let ptr = slice.as_mut_ptr() as *mut [T; N];
678 Ok(unsafe { Box::from_raw(ptr) })
679 } else {
680 Err(slice)
681 }
682 }
683}
684
685#[cfg(feature = "serde")]
686mod serialize {
687 use super::*;
688
689 use serde::{Serialize, Serializer};
690
691 impl<'a, T> Serialize for Box<'a, T>
692 where
693 T: Serialize,
694 {
695 fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
696 T::serialize(self, serializer)
697 }
698 }
699}